- •Министерство образования и науки Российской Федерации
- •Глава III. Евклидовы пространства
- •§ 1. Определения, примеры и простейшие свойства
- •Свойства скалярного произведения
- •§ 2. Длины и углы в евклидовых пространствах
- •Свойства длины в евклидовых пространствах
- •§ 3. Ортогональные базисы евклидовых пространств
- •§ 4. Изоморфизм евклидовых пространств
- •Глава IV. Теория линейных операторов в векторных пространствах
- •§ 1. Определение и простейшие свойства
- •Простейшие свойства линейных операторов
- •§ 2. Матричный формализм в векторных пространствах
- •Простейшие свойства матричного формализма
- •§ 3. Матрица перехода от базиса к базису
- •Свойства матрицы перехода
- •Изменение координатного столбца при переходе от базиса к базису
- •§ 4. Матрица линейного оператора
- •Координатная форма записи линейного оператора
- •Изменение матрицы линейного оператора при переходе от базиса к базису
- •Свойства матрицы линейного оператора
- •§ 5. Образ, ядро, ранг и дефект линейного оператора
- •§ 6. Инвариантные подпространства линейного оператора
- •§ 7. Собственные числа и собственные векторы линейного оператора
- •§ 8. Подобные матрицы и их спектральные задачи
- •§ 9. Post Scriptum : о подобии матриц
- •§ 10. Спектр симметричного оператора Ортогональные дополнения подпространств евклидова пространства
- •Симметричные линейные операторы
- •Глава V. Дифференцирования в банаховых пространствах
- •§ 1. Метрические пространства
- •Матричные нормы
§ 10. Спектр симметричного оператора Ортогональные дополнения подпространств евклидова пространства
Пусть U, W – два подпространства в векторном пространстве V, причем U W = {0} и v V u U , w W v = u + w, т.е. V = U + W. Тогда говорят, что пространство V является прямой суммой подпространств U и W и пишут V = U W.
Примеры: 1. Пусть V = V2(O, R) – множество всех векторов плоскости, отложенных от т. О, и на плоскости задана аффинная система координат с центром в т. О, U = { u V | u лежит на оси ОХ }, W = { w V | w лежит на оси ОY }. Тогда V = U W (?!).
2. Пусть V = R3. Рассмотрим подпространства
U = {(u1 ; u2 ; u3) R3 | u1 + u2 + u3 = 0}, W = {(w1 ; w2 ; w3) R3 | w1 = w2 = 0}
(почему они будут подпространствами в V ?!). Тогда V = U W . Действительно, если v = (v1 ; v2 ; v3) U W, то , т.е.v1 = v2 = = v3 = 0, и U W = {0}. Справедливость равенства U + W = V следует из представления (v1 ; v2 ; v3) = (v1 ; v2 ; –v1 – v2) + (0; 0; v3 + v1 + v2) U + W.
Упражнение. Докажите, что (V = U W) ( v V ! u U, w W v = u + w).
Теорема (об ортогональном дополнении). Пусть (V, (_, _)) – евклидово пространство, U – его конечномерное подпространство. Тогда
U = {w V | u U (u , w) = 0 }
является подпространством в V, причем V = U U. Пространство U называется ортогональным дополнением к U в пространстве V.
Доказательство. Прежде всего, U , т.к. 0 U. Кроме того, U замкнуто относительно сложения и умножения на скаляры. В самом деле, если w1 , w2 U, R, то для любого u U имеем:
(u , w1 + w2) = (u , w1)+(u , w2 ) = 0+0 = 0, (u , w1) = (u , w 1) = 0 = 0.
По лемме о подпространстве, U – подпространство в V.
Докажем, что V = U U. Пусть v U U. Тогда по определению U имеем (v , v) = 0, и v = 0 из неотрицательности скалярного произведения. Итак, U = {0}. Осталось проверить, что V = U + U. Если U = {0}, то U = V, и доказывать нечего. Если же U {0}, то (по теореме об ортонормированном базисе) можно выбрать ортонормированный базис e = (e1 , … , en ) в U. Пусть v V и u = (v , e1 )e1 + … + (v , en)en U, g = v – u . Тогда, как и в теореме об ортонормированном базисе, убеждаемся, что g ei (1 i n), т.е. g U (?!) и v = u + g U + U.
Теорема доказана.
Примеры: 1. Найти ортогональное дополнение к подпространству U, порожденному векторами u1 = (0; 1; –1; 1) и u2 = (–1; 0; 0; 1) стандартного евклидова пространства R4.
Так как U = {w R4 | u U (u , w) = 0 }, то
((w1 ; w2 ; w3 ; w4) ) .
Таким образом, U = { (w4 ; w3 – w4 ; w3 ; w4) R4 | w3 , w4 R }. Базисом является фундаментальная система решений рассмотренной однородной системы линейных уравнений, получающаяся из найденного общего решения при значениях свободных переменных w3 = 1, w4 = 0 и w3 = 0, w4 = 1 – а именно система векторов (0; 1; 1; 0), (1; –1; 0; 1).
2. Пусть V = V2(O, R) со стандартным скалярным произведением (a , b) = = |a||b|cos( a ,b). Если U = { u V | u лежит на прямой y = 2x }, то легко доказать, что U= { w V | w лежит на прямой y = – 0,5x } (?!).