
- •Конспект лекций
- •1.1.2. Классификация легирующих элементов
- •1.1.3. Маркировка легированных сталей
- •1.1.4. Примеси в сталях
- •Газы в стали
- •1.2. Фазы в легированных сталях
- •1.2.1. Твердые растворы на основе железа
- •Закономерности образования твердых растворов замещения
- •Закономерности образования твердых растворов внедрения
- •1.2.3. Влияние легирующих элементов на свойства феррита
- •1.2.4. Влияние легирующих элементов на свойства аустенита
- •1.2.5. Влияние легирующих элементов на термодинамическую активность углерода
- •1.2.6. Образование карбидов и нитридов
- •Карбиды и нитриды металлов IV - V групп (Ti, Zr, Hf, V, Nb, Ta)
- •Карбиды и нитриды металлов IV, V групп – это фазы внедрения
- •Карбиды и нитриды металлов VI группы
- •Карбиды металлов VII группы (марганец)
- •Карбиды металлов VIII группы (железо)
- •Электронные соединения
- •Сигма-фазы
- •Фазы Лавеса
- •Геометрически плотноупакованные фазы
- •1.2.8. Неметаллические включения
- •1.2.9. Влияние легирующих элементов на полиморфное превращение в железе
- •1.2.10. Влияние легирующих элементов на критические точки стали
- •2. Фазовые превращения в легированных сталях
- •2.1. Влияние легирующих элементов на образование аустенита при нагреве
- •2.1.1. Структурная перекристаллизация стали при полиморфном превращении
- •Исходная неупорядоченная структура
- •Исходная упорядоченная структура. Структурная наследственность в стали
- •2.1.2. Растворение карбидов и нитридов в аустените
- •2.1.3. Рост зерна аустенита при нагреве
- •2.2. Превращение переохлажденного аустенита
- •2.2.1. Влияние легирующих элементов на устойчивость переохлажденного аустенита
- •2.2.2. Влияние легирующих элементов на перлитное превращение
- •2.2.3. Влияние легирующих элементов на бейнитное превращение
- •3.1 Классификация специальных сталей
- •Конструкционные стали
- •3.2.1 Требования к конструкционным сталям
- •3.2.2 Механизмы упрочнения конструкционной стали
- •3.2.3 Строительные стали Требования, предъявляемые к строительным сталям
- •Углеродистые стали
- •Низколегированные строительные стали
- •Стали повышенной прочности
- •Высокопрочные стали
- •Стали с карбонитридным упрочнением
- •Малоперлитные стали
- •Бейнитные стали
- •Низкоуглеродистые мартенситные стали
- •Арматурные стали
- •Упрочняющие обработки, применяемые для строительных сталей
- •Вопросы для самоконтроля
- •Литература
- •3.2.4 Машиностроительные конструкционные стали Общие требования к машиностроительным сталям и их классификация
- •Стали, применяемые для изготовления изделий методом холодной штамповки (глубокой вытяжки)
- •Вопросы для самоконтроля
- •Литература
- •Стали для цементации и нитроцементации
- •Вопросы для самоконтроля
- •Литература
- •Улучшаемые стали
- •Вопросы для самоконтроля
- •Литература
- •Пружинные стали
- •Классификация пружинных сталей
- •Применяемые стали общего назначения
- •Термическая обработка пружинных сталей общего назначения
- •Пружинные стали специального назначения
- •Вопросы для самоконтроля
- •Литература
- •Подшипниковые стали
- •Основные требования к подшипниковым сталям
- •Классификация подшипниковых сталей
- •Легирование подшипниковых сталей
- •Термическая обработка деталей подшипников из сталей
- •Вопросы для самоконтроля
- •Литература
- •3.3 Высокопрочные конструкционные стали
- •3.3.1 Легированные низкоотпущенные стали
- •Вопросы для самоконтроля
- •Литература
- •3.3.2 Высокопрочные дисперсионно-твердеющие стали
- •Вопросы для самоконтроля
- •Литература
- •3.3.3 Мартенситностареющие стали
- •Классификация мартенситностареющих сталей
- •Принцип легирования мартенситностареющих сталей
- •Достоинства и недостатки мартенситностареющих сталей
- •Термообработка мартенситностареющих сталей
- •Экономнолегированные мартенситностареющие стали
- •Области и перспективы применения мартенситностареющих
- •Вопросы для самоконтроля
- •Литература
- •3.3.4 Метастабильные аустенитные стали (мас) Особенности мас
- •Использование мас для повышения стойкости деталей
- •Вопросы для самоконтроля
- •Литература
- •4. Инструментальные стали
- •4.1. Классификация инструментальных сталей
- •4.2. Стали для режущего инструмента
- •Углеродистые инструментальные стали
- •Легированные стали
- •Быстрорежущие стали
- •Твердые сплавы
- •4.2. Штамповые стали
- •Стали для инструмента холодного деформирования
- •Стали повышенной (высокой) износостойкости
- •Стали с высоким сопротивлением смятию
- •Высокопрочные стали с повышенной ударной вязкостью
- •Стали для инструмента горячего деформирования
- •5. Конструкционные стали специального назначения
- •5.1. Криогенные стали (стали для криогенной техники)
- •Аустенитные криогенные стали
- •Ферритные криогенные стали
- •5.2. Износостойкие стали
- •Кавитационностойкие стали с метастабильным аустенитом
- •5.3. Стали с повышенной обрабатываемостью резанием
- •5.4. Рельсовые стали
- •5.5. Коррозионностойкие стали и сплавы Основные понятия и определения.
- •Мартенсито-ферритные и мартенситные стали
- •Ферритные стали
- •Аустенитные стали
- •Аустенито - ферритные стали
- •Сплавы на железоникелевое и никелевой основе
- •5.6 Жаростойкие стали и сплавы
- •Хромистые и хромоалюминиевые стали ферритного класса
- •Стали мартенситного класса
- •Стали и сплавы аустенитного класса
- •5.7 Жаропрочные стали и сплавы
Термическая обработка деталей подшипников из сталей
типа ШХ (ШХ15, ШХ15СГ, ШХ20СГ)
Предварительная термическая обработка поковок – смягчающий сфероидизирующий отжиг, при котором обеспечивается растворение определенной части карбидной фазы в аустените и образование зернистого перлита. Сталь со структурой зернистого перлита обеспечивает хорошую производительность резания и качество обрабатываемой поверхности при обработке заготовок на станках–автоматах. Однородный мелкозернистый перлит является оптимальной исходной структурой для последующей закалки, т.к. глобулярная форма и равномерное распределение карбидов наилучшим образом соответствует оптимальному по прочности и вязкости структурному состоянию стали после закалки (мелкие карбидные глобули равномерно распределенные в мартенсите). Твердость после отжига сталей ШХ15, ШХ4 находится в пределах НВ179-207, а сталей ШХ15СГ и ШХ20СГ НВ 179-217.
Готовые детали подшипников подвергают ступенчатой или изотермической закалке от 850–900 °С. Выбор такой температуры нагрева обусловлен, с одной стороны, необходимостью растворить карбиды хрома в аустените, а с другой – не допустить чрезмерного роста зерна аустенита. Кроме того, повышение температуры закалки приводит к существенному снижению мартенситной точки Мн и, как следствие этого, к образованию остаточного аустенита, что для подшипниковых сталей нежелательно.
В настоящее время применяется как закалка в одном охладителе, так и ступенчатая или изотермическая закалка с выдержкой в области образования нижнего бейнита при 210–240 °C. Для марганецсодержащих сталей изотермическую закалку не применяют из-за чрезмерно высокой устойчивости переохлажденного аустенита в бейнитной области. Весьма перспективно применение для закалки деталей подшипников индукционного нагрева. Это увеличивает производительность и экономичность термических агрегатов, а также позволяет получить полностью закаленный поверхностный слой с сохранением высокой вязкости сердцевины. Твердость поверхности при любом способе закалки должна быть на уровне HRC 60–66.
Окончательной операцией термической обработки подшипниковых сталей является низкотемпературный отпуск, цель которого уменьшение закалочных напряжений. Благодаря ему достигается повышение вязкости (за счет уменьшения тетрагональности мартенсита и внутренних напряжений), размерная и структурная стабильность деталей. Отпуск деталей подшипников из стали ШХ15 осуществляют при 150–165 ºС, а из сталей ШХ15СГ и ШХ20СГ – при 165–175 ºС. После окончательной термообработки твердость колец и роликов из стали ШХ15 должна быть в пределах HRC 61–65, а из стали ШХ15СГ – в пределах HRC 60–64. Микроструктура представляет собой скрытокристаллический мартенсит отпуска и равномерно распределенные глобулярные избыточные карбиды хрома. Содержание остаточного аустенита должно быть минимальным.
Вопросы для самоконтроля
1. Каковы условия работы деталей подшипников?
2. Какие требования предъявляются к подшипниковым сталям?
3. С какой целью проводят рафинирующие переплавы при производстве подшипниковых сталей?
4. Как классифицируются подшипниковые стали?
5. Каковы принципы легирования, роль легирующих элементов и области применения подшипниковых сталей общего назначения?
6. Какие стали применяются в качестве материала для изготовления теплостойких и коррозионностойких подшипников? Каковы принципы их легирования и термообработка?
7. Какой предварительной и окончательной термообработке подвергаются детали подшипников из сталей типа ШХ?