Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Desktop_1 / korotich.doc
Скачиваний:
833
Добавлен:
05.03.2016
Размер:
6.11 Mб
Скачать

Классификация подшипниковых сталей

Подшипниковые стали обычно классифицируются по условиям работы: различают стали общего назначения, используемые для изготовления деталей подшипников (колец, шариков, роликов), работающих при температурах –60÷300 °С в неагрессивных средах, и стали специального назначения, предназначенные для изготовления теплостойких и коррозионностойких подшипников. Составы сталей для подшипников общего назначения регламентируются ГОСТ 801-78, а подшипников специального назначения – соответствующими ТУ.

Легирование подшипниковых сталей

Подшипниковые стали в основном заэвтектоидные (около 1,0 % С) в отожженном состоянии. В нормализованном состоянии они относятся к перлитному классу. Основной легирующий элемент – хром, который определяет состав карбидной фазы и обеспечивает требуемую прокаливаемость. При необходимости увеличить прокаливаемость (для крупногабаритных подшипников, у которых толщина стенок колец более 10 мм, а ролики диаметром более 20 мм) стали дополнительно легируют кремнием (0,40–0,85 %) и марганцем (0,90–1,70 %). Кроме того, кремний при отпуске замедляет распад мартенсита в интервале температур 150–350 ºС и вследствие этого дает более высокие значения твердости.

Наиболее часто для изготовления деталей подшипников применяют стали: ШХ15, ШХ15СГ, ШХ20СГ, ШХ4.

Для деталей крупногабаритных подшипников, работающих при повышенных контактных напряжениях и ударных нагрузках (например, подшипники прокатных станов, буровых установок и т.п.), применяют цементуемые низкоуглеродистые легированные стали: 18ХГТ, 20ХН3А, 20ХНМ, 20Х2Н4А и др. Детали из таких сталей подвергаются цементации с последующей термообработкой (закалка и отпуск). Эти стали обеспечивают высокую прокаливаемость, вязкость сердцевины, контактную прочность. Однако твердость сердцевины должна быть не менее HRC35–45 во избежании продавливания цементованного слоя при эксплуатации.

Теплостойкие подшипники качения должны обладать высокой твердостью, в том числе при рабочих температурах (горячая твердость), которая определяет несущую способность подшипника, достаточной контактной выносливостью в рабочем интервале температур, высоким сопротивлением ползучести и релаксации напряжений при воздействии динамических нагрузок и температуры, определенными заданными значениями некоторых физических свойств, например, термического коэффициента расширения (во избежании потери натяга в паре с сопряженным металлом), высоким сопротивлением контактной ползучести (длительная горячая твердость). Для работы при повышенных температурах (более 300 ºС) применяют теплостойкие стали типа 8Х4М4В2Ф1Ш и 8Х4В9Ф2Ш. Высокая теплостойкость этих сталей достигается при совместном легировании вольфрамом и молибденом. Их суммарное содержание должно удовлетворять соотношению W + 2Мо = (7–10) %. Меньшее содержание не позволяет получить достаточную теплостойкость и структурную стабильность.

Содержание хрома в теплостойких подшипниковых сталях обычно составляет 4,0–5,0 %. Содержание ванадия ограничивается 1,0–1,7 %, поскольку ванадий ухудшает шлифуемость стали. Из-за необходимости уменьшения карбидной неоднородности содержание углерода ограничивается 0,8 %. Эти стали относятся к дисперсионнотвердеющим. Они подвергаются закалке с температуры 1220–1240 ºС для стали 8Х4В9Ф2Ш и 1130–1160 ºС для стали 8Х4М4В2Ф1Ш в горячем масле (80–130 ºС) и последующему трехкратному отпуску при 565–580 ºС в течение 2 ч при каждом отпуске с охлаждением на воздухе. Твердость после термической обработки составляет HRC 60–64. Микроструктура – скрыто- и мелкоигольчатый мартенсит и избыточные карбиды.

Для деталей подшипников, работающих в агрессивных средах, применяются коррозионностойкие стали, содержание около 18 % хрома, поскольку необходимо обеспечить одновременно достаточную теплостойкость и коррозионную стойкость. В основном применяют сталь 95Х18Ш (0,9–1,1 % С). Термическая обработка включает закалку, обработку холодом и низкотемпературный отпуск при 150–160 ºС в течение 3 ч. Твердость после термообработки составляет HRC 58–62; микроструктура – скрыто- и мелкокристаллический мартенсит и избыточные карбиды.

Подшипники из коррозионностойких сталей, предназначенные для работы при повышенных температурах, отпускают при 400–420 ºС в течение 5 ч, при этом твердость понижается до HRC 55.

Для деталей подшипников, работающих при повышенных температурах, наряду с высокохромистыми сталями применяют стали типа быстрорежущих, в которых обеспечивается горячая твердость HRC 56–58. Необходимо только еще раз отметить, что применение любых сталей, в том числе быстрорежущих, требует применения шлакового или другого рафинирующего переплава.

Производство деталей подшипников является весьма дорогостоящим, поскольку велики расходы металла при обработке резанием. В настоящее время внедряется производство деталей подшипников методами порошковой металлургии. Это позволяет резко снизить металлоемкость производства в некоторых случаях без заметного снижения качества подшипников.

Соседние файлы в папке Desktop_1