
- •Лекція 1. Предмет і завдання курсу. Історичні передумови появи маніпуляторів та промислових роботів. Сучасні концепції комплексної автоматизації виробництва
- •1.2. Системи управління пр
- •1.3. Сучасні концепції комплексної автоматизації виробництва
- •Лекція 2. Робот як об’єкт керування. Особливості взаємодії робота і людини в умовах виробництва. Основні поняття, терміни, визначення
- •Дистанційно-керовані маніпулятори
- •Лекція 3 . Функціональна схема і класифікація промислових роботів. Основні технічні показники пр
- •3.1. Функціональна схема пр
- •3.2. Класифікація пр
- •3.3. Основні технічні показники промислових роботів
- •Лекція 4 . Системи основних координатних переміщень. Поняття однорідних координат
- •4.1. Система основних координатних переміщень
- •4,2. Поняття узагальнених координат
- •Лекція 5. Кінематичні схеми. Типові кінематичні схеми роботів різної конструкції
- •Вимоги до кс
- •Лекція 6 . Кінематичний аналіз пр. Розв’язання прямої задачі кінематики
- •Розв’язаня прямої задачі
- •Приклад
- •Визначення швидкості та прискорення робочого органу пр
- •Приклад
- •Лекція 7 . Розв’язання зворотної задачі кінематики маніпулятора. Методи точного і наближеного розв’язання зворотної задачі
- •Приклад
- •Наближені методи
- •Метод Ньютона
- •Лінійне наближення рівнянь зв’язку має вигляд
- •Метод розрахунку приростів узагальнених координат
- •Лекція 8. Динаміка механічної частини пр. Динамічний аналіз. Складання рівнянь руху маніпулятора у загальних координатах
- •Лекція 9. Вимоги до приводів пр. Вибір двигунів приводів
- •Лекція № 10 . Типи і характеристики електродвигунів, що застосовуються у робототехніці. Промислові серії електродвигунів
- •Лекція № 11. Спеціальні двигуни постійного струму. Вентильні двигуни
- •11.1. Спеціальні двигуни постійного струму
- •11.2. Вентильні двигуни
- •Лекція 12 Електроприводи промислових роботів. Функціональна схема еп і його елементи.
- •Лекція 13. Типові структури регульованих еп.
- •Синтез систем керування еп эшим1 і эпб2
- •Лекція № 14 . Синтез систем керування еп промислових роботів.
- •14.2. Вибір системи керування еп пр
- •14.3. Структурна схема каналу керування “Електроніка нцтм–30”
- •Лекція № 15 . Системи дистанційного керування роботами
- •15.1. Системи дистанційного керування
- •15.1.1. Системи командного керування
- •15.2. Системи копіювального керування
- •15.3. Системи напівавтоматичного (н/а) керування
- •15.3.1. Основні способи напівавтоматичного керування маніпуляторами
- •Лекція 16 . Системи автоматичного керування роботами
- •16.1. Особливості систем автоматичного керування
- •16.2. Циклові ск
- •Лекція 17 . Позиційно-контурні системи керування. Адаптивні системи керування
- •17.1. Загальні положення
- •17.2. Будова позиційно-контурного програмного керування
- •17.4. Обробка інформації в сенсорних системах
- •Лекція 18 . Динамічні моделі маніпулятора. Структурні схеми моделей механічної частини маніпуляторів
- •0 Бл.-вид. Арк.. 3,75
Лекція № 11. Спеціальні двигуни постійного струму. Вентильні двигуни
11.1. Спеціальні двигуни постійного струму
У двигунах постійного струму, що застосовуються в ПР, використані практично всі типи конструкцій магнітних систем: радіальні, скобоподібні, кільцеві, зовнішні з якорем класичної конструкції, набраного з шихтованої електротехнічної сталі, внутрішні, розташовані всередині пустого якоря.
Поряд з класичною конструкцією якоря добре вивченою в курсі “Електричні машини”, широко застосовується гладкий і малоінерційний якорі. Гладкий якір з відкритим пазом і мінімальним числом витків у секції має зменшену індуктивність секції і обмотки якоря в цілому. У зв’язку з цим при гладкому якорі поліпшуються умови комутації машин і, отже, перевантажувальна здатність. Мала інерційність якоря досягається його порожнім або дисковим виконанням.
Двигуни з порожнім ротором (ДПУ135) – мають конструкцію, що спрощено зображена на рис.1.
Рис.11.1.
Конструкція двигуна постійного струму
з порожнім ротором.
На підшипниковому щиті 2 укріплено постійний магніт 4. Магнітний потік замикається по корпусу 3 і пронизує витки обмотки якоря, яка виконана двошаровою і утворює порожній ротор 5 при заливці її спеціальним компаундом і наступної формовки. Ротор насаджений на вал 1. Кінці обмоток виведені на колектор 7, до якого притиснуті щітки 6.
Двигуни мають хорошу комутацію завдяки малій індуктивності секцій, електромагнітну і електромеханічну постійну часу у 2–2,5 рази менше і більш високий ККД, ніж звичайні двигуни тієї ж потужності.
Дискові двигуни мають штампований дисковий якір із ізоляційного матеріалу, по обидві боки якого методом печатного монтажу нанесені тонкі провідники, як показано на рис.2. Радіальні ділянки 1 витків утворюють активні провідники, зігнуті ділянки 2 – лобову частину обмотки. Перехід з одного боку на інший здійснюється через металізовані отвори або клепки 3.
Рис.11.2. Якір з печатною обмоткою (восьмиполюсна хвильова обмотка).
Провідники печатного монтажу виконані без ізоляції і, отже, допускають суттєво більші щільності струмів (30–40 А/мм2 і до 100–150 А/мм2 в імпульсі), ніж обмотки звичайного якоря, що знаходиться в пазах, завдяки кращим умовам охолодження. Звичайно у таких машин щітки ковзають безпосередньо по провідникам обмотки, тобто колектора не треба. Момент інерції печатного якоря у 2–4 рази менше, ніж у двигуна тієї ж потужності з якорем звичайного виконання. На рис.3. зображена конструкція дискового двигуна ДПУ, де позначені: 1 – вал, 2 – щітки, 3 – щіткотримач, 4 – полюс, 5 – магнітопровід, 6 – корпус, 7 – роз’єм, 8 – якір, 9 – щит підшипниковий, 10 – тахогенератор.
Рис.11.3. Конструкція двигуна ДПУ (дискового).
Постійні магніти 4 закріплені в кільцевому магнітопроводі 5, що виготовлений з магнітом’якого матеріалу. Магнітна система вбудована в корпус 6 і підшипниковий щит 9. У корпусі встановлено щітковий вузол 2 і 3. Щітки 2 безпосередньо ковзають по провідникам обмотки печатного якоря 8.
Двигун з печатною обмоткою на дисковому якорі у порівнянні з двигунами звичайної конструкції має наступні переваги:
незначну електромагнітну постійну часу,
безіскрову комутацію,
понижений момент інерції,
покращені динамічні якості,
лінійність механічних характеристик в тому числі при великих навантаженнях,
невелику вартість,
низький рівень шумів і вібрацій.
Недоліки:
мала жорсткість механічної характеристики (за рахунок великої щільності струму обмотки якоря),
підвищені втрати в міді і на вихрові струми у печатній обмотці, що знижують ККД,
підвищений розмір немагнітного зазору, що також приводить до зниження ККД,
мала довговічність за рахунок зносу печатного монтажу під щіткою.
Електромагнітна постійна часу у розглянутого нами типу двигунів суттєво менше електромеханічної, і передавальна функція двигуна може бути записана спрощено:
,
де ω – кутова швидкість (1/с), Uя – напруга якоря, с –постійна машини (Вс), Тм – електромеханічна постійна (с).