Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Консп_лекц_Окруж_среда Мониторинг.doc
Скачиваний:
96
Добавлен:
03.03.2016
Размер:
1.35 Mб
Скачать

Характерные интервалы концентрации биогенных элементов в поверхностных водах суши (в скобках пдк, мг/л)

Feобщ

0,1 – 2

Siобщ

1 – 10

Рорг

0,01 – 0,2

(не установл.)

Рнеорг

0,01 – 5

(не установл.)

Nорг

0,2 – 2

(не установл.)

NO3-

0 – 2

(10,0)

NO2-

0 – 0,5

(1,0)

NH4+ + NH3

0,02 – 1,5

(NH4+ - 2,0; NH3 – 0,08)

Наименее стойкой формой азота в условиях природных вод являются ионы NO2-, которые в зависимости от рН, Еh, концентрации О2 и активности водных бактерий, легко окисляются в NO3- или восстанавливаются в NН4+. Увеличение концентрации NO2- и особенно NН4+ является одним из признаков загрязнения природных вод.

Неорганические формы азота при больших концентрациях проявляют токсичные действия. При этом особую токсичность проявляет аммиак NH3, ПДК которого является наиболее низкой среди всех форм неорганического азота.

Соотношение между содержанием NH3 и значительно менее токсичными ионами NН4+ зависит от рН и температуры воды (табл. 3). Из таблицы видно, что при повышении общей концентрации аммонийного азота скопление значительного количества особенно токсичных для рыб NH3 можно ожидать при рН ≥ 9 и при высоких t.

Таблица 3

Зависимость содержания nh3 от рН воды при разных температурах

t 0C

6

8,5

10

25

0,05

13,4

83,1

15

0,02

6,7

70,1

5

0,01

3,3

51,7

Источниками поступления соединений азота в природные воды являются минеральные удобрения и дожди, которые смывают их с почвы.

В дождевой воде содержатся также продукты окисления азота электрическими разрядами в атмосфере и промышленные азотосодержащие газовые выбросы. Значительное количество соединений азота попадает также в природные воды с коммунально-бытовыми стоками.

Уменьшению концентрации неорганических соединений азота в природных водах способствует процесс денитрификации, который происходит при недостатке О2 и при наличии безазотистых органических соединений типа клетчатки, крахмала и т.д. На их окисление расходуется О2 нитратов и при этом азот выделяется в свободном состоянии.

4NO3- + 5C + 2H2О → 2↑N2 + ↑CO2 + 4 HCO3-­­ (5)

Фосфор содержится в природных водах также в виде неорганических и органических (Рорг.) соединений. Концентрации этих соединений практически одинаковы, хотя их уровень значительно ниже, чем концентраций соединений азота (Табл. 2).

В отличие от азота, который содержится в водах в степенях окисления – 3, +3 и +5, фосфор проявляет степень окисления только + 5, т.е. неорганические соединения Р можно рассматривать как производные ортофосфорной кислоты или продуктов её конденсации. Поступают соединения Р в природные воды в процессе жизнедеятельности гидробионтов и при минерализации их остатков. Концентрация Р уменьшается вследствие употребления его соединений водными растениями. Эти процессы можно отобразить схемой

Важным антропогенным источником поступления неорганического Р (ортофосфатов, полифосфатов) в поверхностные воды суши являются смывание фосфорсодержащих удобрений дождём с с/х угодий, а также сточные воды прачечных комбинатов, что содержат соединения Р в составе моющих средств.

В зависимости от рН природной воды, ортофосфаты содержатся в ней в основном в форме ионов H2PO4- и HPO42- , часть которых при изменении рН от 5 до 10 изменяется от 97,9 % до 0,05 % и от 1,9 % до 99,6 %, соответственно. Однако такая смена соотношения между различными формами Рнеорг. не влияет на результаты его определения наиболее распространённым фотометрическим методом в виде фосфорномолибденовой гетерополикислоты. Это обусловлено тем, что анализ выполняют в очень кислой среде, в которой в результате сдвига равновесия диссоциации ортофосфаты переходят в молекулы Н3РО4.

Кремний является постоянным компонентом природных вод, что связано с его присутствием в составе разнообразных минералов, с которыми контактируют воды. В поверхностных водах суши Si содержится в основном в виде мономерной малодиссоциирующей ортокремниевой кислоты H2SiO3 и поликремниевых кислот, а также в коллоидном состоянии X × SiO2 × УН2О, который часто является доминирующим. Содержание соединений кремния в поверхностных водах суши (табл. 2) ~ соответствует растворимости мономерной ортокремниевой кислоты, которая составляет ~ 6 мг/л. Значительное уменьшение концентрации соединений кремния, особенно в вегетационный период, свидетельствует о его интенсивном употреблении водными организмами. Многие из них строят свой скелет из кремния. Кроме того, кремниевая кислота как наиболее слабая может вытесняться из воды более сильной угольной кислотой.

Определение Si, аналогично Р, базируется на реакциях образования гетерополикислот. Поэтому Si, содержание которого в природных водах значительно превышает содержание Р, может мешать определению последнего.

Железо в виде растительных соединений, коллоидов и суспензий поступает в поверхностные воды суши вследствие химического выветривания горных пород, которое сопровождается их механическим разложением и растворением. Значительные количества соединений железа поступают также с подземными стоками и с сточными водами предприятий металлургической и металлообрабатывающей промышленности. С другой стороны, в природных водах происходят биологические и физико-химические процессы, которые сопровождаются употреблением водными растениями соединений железа и его осаждения в виде, в основном, гидроксида Fe(OH)3.

В состав неорганических и органических соединений природных вод Fe может входить при степенях окисления + 2 или + 3. Соединения Fe (+ 2) образуются при низких значениях рН и Еh, когда доминируют процессы деструкции органических соединений и вода обедняется на содержание растворённого О2. Такие условия возникают в природных слоях воды, особенно зимой во время замерзания. Fe (+ 2) в таких условиях содержится в форме Fe2+, [FeOH]+, [FeCO3]0 и комплексных соединений с органическими веществами. Соотношение этих форм зависит от рН воды и концентрации неорганических и органических лигандов.

Fe (+ 2) необходимое в организме человека для синтеза гемоглобина (суточная потребность 5 – 20 мг) и токсичное действие его не выявлено. Однако при содержании ионов Fe2+ > 0,5 мг/л вода приобретает своеобразный металлический вкус, поэтому его присутствие в водах является нежелательным.

При повышении рН и Еh железо (+ 2) окисляется растворённым в воде кислородом до Fe (+ 3), поэтому более характерной для поверхностных вод суши с рН ≥ 6 и Еh > 200 – 300 мВ является наличие соединений Fe (+ 3). В соответствии с расчётами с использованием ПР Fe(OH)3 и констант стойкости растворённых гидрокомплексов состава [FeOH]2+, [Fe2(OH)2]4+, [Fe(ОН)3]0 практически все Fe при этих условиях должно быть связано в гидрокомплекс [Fe(ОН)3]0 и его концентрация не может превышать 0,017 мг/л. Однако по данным табл. 2 выплывает, что для поверхностных вод суши характерной является более высокая концентрация железа, которая может достичь 2 мг/л и даже больше, особенно в летний период. Это свидетельствует о связывании ионов Fe (+ 3) в хорошо растворимые комплексы в органическими лигандами. Данные табл. 4 свидетельствуют о том, что в водах Fe3+ бывает в форме комплексов с лигандами молекулярной массы около 10 тыс.

Таблица 4

Средняя степень связывания Fe (+ 3) в комплексные соединения в природных водах

Молекулярная масса комплексов, тыс

≥ 100

100 - 10

10 - 1

≤ 1

связывание

29,0

32,7

25,3

13,0

Связывание ионов Fe (+ 3) в стойкие комплексы с органическими лигадами часто мешает количественному определению его валового содержания, особенно фотометрическими и кинетическими методами. Поэтому для правильных результатов Fe необходимо определять по возможности в сильнокислых растворах, где его комплексы с органическими соединениями природных вод разрушаются. Значительно лучше перед определением Fe разрушить органические соединения методом «мокрого сжигания» или дихотомическим окислением.

В данных на табл. 2 видно, что только общее содержание Fe и NH3 могут превысить ПДК.

Микроэлементы. К этой группе относятся соединения металлов и некоторых неметаллов (Br, J, B), содержание которых в поверхностных водах суши обнаруживается в пределах нескольких десятков и меньше мкг/л (табл. 5). Некоторые из них – Mn, Zn, Cu, Mo и Co входят в состав так называемых биометаллов, которые являются катализаторами и составными частями биохимических процессов в организме человека, животных и растений и без которых живые существа не могут развиваться. Так, например, ионы Mn2+ которые всегда присутствуют в природных водах, берут участие в биоциклах. Недостаток Mn в организме человека приводит к деформации костей и хрящей и нарушает функцию сворачиваемости крови. Суточная потребность Mn для человека составляет 2 – 9 мг. Ионы Zn также играют важную роль в организме человека. Все жизненные процессы на уровне клеток в той или иной мере зависят от наличия ионов Zn. Недостаток Zn в организме приводит к выпадению волос, потере аппетита, появлению ревматизма и в целом ослаблению иммунитета. Суточная потребность Zn для человека составляет 15 мг.

Таблица 5