Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Статистика_УП.doc
Скачиваний:
203
Добавлен:
29.02.2016
Размер:
3.22 Mб
Скачать

4.2. Средние величины

Средней величинойв статистике называют обобщающий показатель, характеризующий общественное явление по одному количественному признаку (или типический размер признака данной совокупности).

Статистические средниеэто реальные показатели, отражающие объективно существующие свойства общественных явлений (производительность труда, стоимость товара, урожайность, национальный доход на душу населения). Явления существуют в жизни, а статистикой характеризуются в виде определенных показателей.

Статистические средние отображают качественно определенные свойства общественных явлений. Этим они и отличаются от математических средних. Также отличительной особенностью средней является то, что в ней взаимно погашаются и уничтожаются индивидуальные отклонения различающихся между собой величин одного и того же вида. Она показывает значение признака для качественно однородной совокупности. Отсюда основным условием научного применения средней является расчет её по качественно однородным явлениям.

Виды средних

При выборе способа и формулы для расчета средней величины необходим предварительный анализ взаимосвязи изучаемых явлений и определение статистической размерности изучаемой величины.

В статистике различают прямые и обратные величины, первичные и вторичные. Прямыми называются такие величины, значение которых увеличивается или уменьшается при увеличении или уменьшении характеризуемых ими явлений. Так, количество произведенной продукции в единицу рабочего времени является прямым показателем производительности труда, а трудоемкость – обратным. Так как статистическая размерность различна, то приходится применять в расчетах различные виды средних: арифметическую, гармоническую, геометрическую, квадратическую и другие, относящиеся к роду степенных средних.

Для расчета простых степенных средних применяется формула:

. (4.1)

Взвешенные средние рассчитываются по формуле:

, (4.2)

где – индивидуальные значения осредняемых признаков, варианты;

– среднее значение исследуемого явления;

m– показатель степени средней;

n –число единиц;

– вес, частота.

Для первичных признаков применяются простые средние, для вторичных – взвешенные. Наиболее распространенной является средняя арифметическая простая, которая применяется в расчетах, когда единицы изучаемой совокупности представлены индивидуальными значениями признака (= 1):

. (4.3)

Средняя арифметическая взвешеннаяприменяется в расчетах, когда индивидуальные значения определяемого признака имеют различную частоту повторения:

. (4.4)

Когда отдельные варианты представлены в виде интервалов «от и до», в качестве варианта принимается середина интервалов. При наличии открытых интервалов границы их устанавливаются условно, исходя из конкретных условий задачи, или с учетом предыдущего интервала. При этом предполагается, что варианты внутри интервала распределяются равномерно. В действительности распределение вариантов внутри интервала может быть неравномерным и середина интервала может не совпадать со средней величиной в интервале. Но при большом числе единиц случайные отклонения взаимно погашаются и полученная средняя достаточно точно покажет типичный размер изучаемого признака [1–5].