Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ТМ1-2013новая_последняя_версия.doc
Скачиваний:
307
Добавлен:
24.02.2016
Размер:
11.36 Mб
Скачать

2.5 Сравнение ам-, чм- и фм- сигналов

Сравним указанные виды модуляции по их двум основным характеристикам: средней за период высокой частоты мощности и ширине спектра.

Для АМ-сигналов средняя за период высокой частоты мощность изменяется, так как изменяется амплитуда сигнала. Эта мощность в максимальном режиме в (1+mАМ)2раз больше мощности молчания. Ширина спектра АМ сигнала зависит от величины максимальной частоты модуляции и равна 2max.

Для ЧМ-сигналов средняя за период высокой частоты мощность постоянна, так как амплитуда колебаний неизменна (Uω1=const). Ширина спектра ЧМ-сигнала, равна2ωg, зависит только от амплитуды модулирующего сигнала и не зависит от его частоты.

Для ФМ-колебаний средняя за период высокой частоты мощность также неизменна, ибо Uω1=const. Ширина спектра равна2m=2ωg, и зависит как от амплитуды модулирующего сигнала, так и от его частоты.

Таким образом, практическая ширина спектра колебаний с угловой модуляцией в mраз больше ширины спектра АМ-колебаний.

2.6 Одновременная модуляция по амплитуде и по частоте

В ряде случаев возникает необходимость в передаче двух сообщений с помощью одного носителя. Тогда одним сообщением носитель модулируют по частоте, а другим – по амплитуде. Наиболее простой по составу спектр сигнала с двойной модуляцией получится при гармоническом законе изменения, как частоты, так и амплитуды. Пусть по частоте носитель модулируется сообщением с частотой 1, а по амплитуде – с частотой2. Тогда частота и амплитуда носителя будут изменяться в соответствии с выражениями

, (2.38)

. (2.39)

Модулированное по частоте напряжение было получено выше при постоянной амплитуде Uω1(2.32). При изменении амплитуды в этом выражении следует заменить постоянную амплитудуUω1 изменяющейся в соответствии с (2.39). Тогда получим:

По сравнению с напряжением, модулированным только по частоте, здесь появляются дополнительные составляющие двух видов:

(2.40)

и

(2.41)

Чтобы яснее выявить спектральный состав сигнала, предположим сначала, что 1>>2, т.е. изменение амплитуды происходит значительно медленнее, чем изменение частоты. Тогда можно считать, что в спектре частотно-модулированного сигнала около несущего колебания с частотойω1и боковых составляющих с частотамиω1n1появилось дополнительно по два спутника с частотами, отличающимися на2. Спектр такого сигнала показан на рисунке 2.14.

Рисунок 2.14 – Спектр сигнала при одновременной модуляции

по частоте и амплитуде при 1>>2

Для систем телемеханики интерес представляет второй случай, а именно спектр сигнала при 1<<2. Тогда можно считать, что у каждой из трех спектральных линий АМ сигнала (несущей с частотойω1, нижней (ω1-2) и верхней (ω1+2) боковых составляющих) появились дополнительно по две боковые дискретные полосы: верхняя с частотами +n1и нижняя с частотами -n1. Спектр сигнала для этого случая двойной модуляции показан на рисунке 2.15.

Рисунок 2.15 – Спектр сигнала при одновременной модуляции

по частоте и амплитуде при 1<<2

Практически необходимая ширина спектра сигнала примерно равна сумме необходимых спектров только при амплитудной модуляции ωАМи только при частотной модуляцииωЧМ(рисунки 2.14, 2.15). При малом индексе частотной модуляции (mЧМ <1) необходимая ширина спектра сигнала лишь немногим больше, чем при амплитудной модуляции.