Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
31
Добавлен:
23.02.2016
Размер:
3.73 Mб
Скачать

Тема 7. Інтеграл ньютоналейбніца

ЛЕКЦІЯ 23

  1. Поняття первісної функції та невизначеного інтеграла.

  2. Основні властивості невизначеного інтеграла.

  3. Таблиця основних інтегралів.

  4. Безпосереднє інтегрування.

  5. Метод підстановки.

  6. Інтегрування частинами.

1. Поняття первісної функції та невизначеного інтеграла

Однією із основних задач диференціального числення є знаходження похідноїзаданої функції. Різноманітні питання математичного аналізу і його застосувань приводять до оберненої задачі: для даної функціїзнайти таку функцію, похідна якої рівна, тобто=.

Відтворення функції за відомою її похідною одна із основних задач інтегрального числення.

Функція називається первісною для функції, на деякому проміжкуХ, якщо для усіх значеньх Хвиконується рівність=.

Якщо первісна для функції, то й функція, деС довільна стала, також є первісною для функції, оскільки()′=+ С ′= + 0 =.

Нехай первісною функції на проміжкуХ, крім функції, є функція, тобто=. Розглянемо різницю. Обчислимо похідну цієї різниці.

()′ === 0.

Отже, згідно з теоремою Лагранжа =С. Звідси маємо:=+С.

Таким чином, множина первісних функції на проміжкуХ, вичерпується функціями виду+С, деодна із первісних функції.

Означення.Сукупність усіх первісних функціїна проміжкуХназивається невизначеним інтегралом функціїна цьому проміжку і позначається.

Невизначений інтеграл інакше називають інтегралом Ньютона Лейбніца.

Якщо одна з первісних функції, то за означенням

=+С.

Знак називається знаком невизначеного інтеграла,підінтегральною функцією, апідінтегральним виразом.

Операцію знаходження невизначеного інтеграла від функції називають інтегруванням цієї функції.

2. Основні властивості невизначеного інтеграла

1. Похідна від невизначеного інтеграла дорівнює підінтегральній функції.

()′=+ С ′= .

2. Диференціал від невизначеного інтеграла дорівнює підінтегральному виразу.

d()=d= d(x).

3. Невизначений інтеграл від диференціала деякої функції дорівнює сумі цієї функції і довільної постійної.

=.

4. Сталий множник можна виносити за знак інтеграла, тобто, якщо k = const  0, то

.

Для доведення цієї властивості досить показати, що права чстина рівності є первісною підінтегральної функції:

.

5. Невизначений інтеграл від суми (різниці) функцій дорівнює сумі (різниці) невизначених інтегралів від кожної функції, тобто

.

Доведення.

.

3. Таблиця основних інтегралів

Безпосередньо із означення визначеного інтеграла випливають наступні формули, котрі утворюють таблицю основних інтегралів:

1.,

2. ,

3. ,

4.

5. ,

6. ,

7. ,

8. ,

9. ,

10. ,

11. ,

12. ,

13. ,

14.

5. Безпосереднє інтегрування

Обчислення інтегралів за допомогою безпосереднього використання таблиці основних інтегралів та їх властивостей називається безпосереднім інтегруванням.

Приклади.

1. .

2. . 3..

4. .

4. Метод підстановки

В основі методу підстановки (методу заміни змінної) лежить формула диференціювання складеної функції. Якщо F ′( x) = f(x), х(a, b),то для довільної диференційованої на проміжку(, )функції x= (t), де(t) (a, b), якщо t (, )маємо:

(F((t)))′ = F ′( x) ′(t) = f(x) ′(t) = f((t)) ′(t).

Таким чином,

,

тобто

.

Приклади.

1. Обчислити інтеграл .

Розв’язування. Покладемо , . Тоді

.

2. Обчислити інтеграл .

Розв’язування. Покладемо . Отже,

.

6. Інтегрування частинами

Нехай функції і визначені й диференційовані на деякому проміжкуХ. Тоді

.

Звідси маємо

.

Припустимо, що інтеграл існує. Тоді

.

Оскільки , то

. (1)

Довільну сталу Свключає в себе інтеграл.

Формула (1) називається формулою інтегрування частинами.

За цією формулою обчислюються , зокрема інтеграли виду

1) , , ,

де  многочлен n-ного степеня відноснох,. Тут слід прийняти .

2), , , ,

Тут також  многочлен n-ного степеня відноснох.У цих інтегралах .

Приклади.

.

.

ЛЕКЦІЯ 24

  1. Подання раціональних дробів у вигляді суми найпростіших дробів.

  2. Інтегрування найпростіших раціональних дробів.

Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.

Оставленные комментарии видны всем.

Соседние файлы в папке Mat_analiz