Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Мат. программирование. Пениа Г.Г..doc
Скачиваний:
150
Добавлен:
21.02.2016
Размер:
4.97 Mб
Скачать

VII. Элементы теории игр

  1. Экономические задачи, приводящие к игровым моделям. Общие понятия теории игр. Чистые, смешанные, оптимальные стратегии. Седловая точка.

  2. Решение игр в смешанных стратегиях. Связь матричных игр с задачами линейного программирования.

Литература: 3(гл. 13), 4(гл. 12).

введение

Возникшие новые пути приложения математики повлекли за собой глубокие изменения в самой математической науке. Они не только вызвали к жизни новые значительные направления теоретической математики (из которых такие, как теория игр или теория информации, заняли уже положение самостоятельных математических наук), но и способствовали изменению установившихся взглядов на ранее сложившиеся разделы. Наиболее существенным здесь является то, что некоторые разделы математики представляются нам теперь гораздо более содержательными и важными, чем это казалось математикам ХІХ века или первой половины ХХ века (как это произошло, например, с алгеброй).

Если начиная с XVII века главенствующее положение в математике занимало изучение функций непрерывно меняющегося аргумента, являющееся основой всех приложений математики к физике и к технике, то сегодня можно говорить о возрождении интереса к “конечной” математике. При этом возникли новые подходы к этой ветви математики, идущие в основном от математической логики.

В настоящее время наблюдается “математизация” целого ряда дисциплин, ранее далеких от всякого влияния математических методов – лингвистики, экономической теории, медицины, педагогики, психологии, теории искусства.

Применение математики в экономических исследованиях дает возможность углубить и уточнить представление о качественной стороне закономерностей, о существе тех предметов и явлений, которые подвергаются исследованию.

Остановимся на некоторых, наиболее важных направлениях экономико-математических исследований.

  1. Использование математических методов при установлении экономически обоснованных цен, при разработке экономических критериев рентабельности, ориентируясь на которые отдельные государственные и частные предприятия могли бы в полной мере осуществлять хозяйственный расчет и сочетать свои и государственные интересы.

  1. Разработка межотраслевых балансов производства и распределения. У нас имеется некоторый опыт балансовых построений. Однако пока еще не создана экономико-математическая модель, которая базировалась бы на системе математических уравнений и неравенств и давала возможность решать на оптимум различные экономические задачи. Построение такой модели обеспечит решение экстремальных задач на минимум затрат общественного труда и на максимально возможный уровень материальной обеспеченности членов общества.

  1. Обеспечение рационального размещения производства при планировании работы транспорта. К числу экономических проблем такого рода относится распределение судов флота между определенными участками водных путей сообщения, наилучшее закрепление самолетов за определенными линиями, оптимальная эксплуатация различных средств транспорта на перевозках различных видов грузов, выбор рациональной схемы движения порожнего состава и др.

  1. Решение разнообразных технико-экономических задач – задач на нахождение оптимального плана использования производственных мощностей (например, загрузки станков), на рациональный раскрой материалов, на наивыгоднейшее расположение хозяйственных объектов (складов, магазинов и пр.), на оптимальный состав химических и иных промышленных смесей, на определение наилучших пищевых наборов и рационов и т.д.

  1. Математика перестала быть вспомогательной наукой, теперь она – мощный аппарат производства, профилирующая дисциплина в экономических исследованиях. Отметим особую роль электронно-вычислительной техники при внедрении математики в экономику. С появлением машин от математиков потребовалось создание новых, более мощных вычислительных методов, были поставлены новые вычислительные задачи.

Создание электронных вычислительных машин произвело революцию в области вычислительной математики и привело к возникновению нового раздела современной математики – математического программирования. К задачам математического программирования относятся задачи оптимизации, которые, как правило, не решаются классическими приемами. Это, прежде всего, задачи математической экономики. Они возникают в тех случаях, когда дефицитные ресурсы – люди, машины, сырье – следует распределить так, чтобы произвести необходимое количество продуктов и расходы при этом были минимальными (или доход максимальный). Огромный интерес к этим задачам объясняется прежде всего тем, что они встречаются не только в теоретической экономике, но и в практике производства, торговли, управления и в военном деле.

Точная экономическая наука особенно нужна теперь, когда непрерывно развивается экономика, и очень усложнились хозяйственные связи. С математической точки зрения методы математического программирования применимы лишь к тем явлениям и процессам, которые выражаются положительными величинами. Величины, характеризующие экономические явления, этим условиям, как правило, удовлетворяют. Математическое программирование можно применять к таким задачам, при решении которых оптимальный результат достигается лишь в виде сформулированных целей и при вполне определенных ограничениях, вытекающих из наличия средств.

Следовательно, для любых задач математического программирования характерны три следующих момента:

  • наличие системы взаимозависимых факторов;

  • строго определенный критерий оптимальности;

  • точная формулировка условий, ограничивающих использование наличных ресурсов или факторов.

Решение задачи достигается применением определенной математической процедуры, которая заключается в последовательном приближении рациональных вариантов, соответствующих выбранным факторам, к оптимальному плану. Сделаем несколько замечаний по постановке задач математического программирования, они затрагивают ряд организационных моментов.

Математический анализ применяется не к реальным явлениям, а к некоторым математическим моделям этих явлений. Такие абстрактные модели, естественно, охватывают не все, а лишь важнейшие для данной задачи стороны явления. Наиболее квалифицированная и ответственная работа при постановке задачи заключается в выборе характеристики явления – в решении, какими характеристиками пренебречь и какие учесть. При выборе переменных желательно обеспечить возможно более простой вид условий и критерия оптимальности. При построении математических моделей исследуемых явлений, особенно в тех случаях, когда эти явления изучаются впервые, не всегда удается сразу сформулировать и записать все условия. Некоторые факторы и ограничения, представляющиеся естественными, предполагаются само собой подразумевающимися и специально не оговариваются. Так, известны, например, случаи, когда при решении задачи о диете с минимальной стоимостью не были учтены вкусовые характеристики диеты. В результате были получены совершенно не съедобные рационы. Иногда встречаются случаи, когда решение, оптимальное с формально-математических позиций, неприемлемо для производства как не удовлетворяющее экономическим, технологическим и другим требованиям, предъявляемым к данному производственному процессу.

Следовательно, применение методов математического программирования может принести пользу тогда, когда условия задачи учитывают экономические, технологические и другие особенности процесса. Поэтому постановку серьезных задач математического программирования целесообразно проводить специалистам прикладных наук совместно с математиками.

Одним из важнейших разделов современной математики является теория игр. Она занимается изучением конфликтных ситуаций. Теория игр вызвана к жизни практическими потребностями в моделях и методах экономического и военного планирования. Эта теория развивалась независимо от математического программирования, пока в 50-х годах не была обнаружена замечательная связь между линейным программированием и теорией игр. Переплетение и взаимное проникновение этих дисциплин оказались полезными для каждой из них. Вычислительные приемы линейного программирования обогатились методами решения игр (итеративными) и наоборот.

Классификация задач математического программирования.

Задачи и методы математического программирования можно классифицировать по различным признакам. Полезно знать хотя бы одну из существующих классификаций, которая, прежде всего, выявляет в задаче наличие элемента случайности или его отсутствие.

Задачи математического программирования могут быть подразделены на два больших класса: детермированные задачи и стохастические (вероятностные).

Детермированными называются такие задачи, в которых критерий оптимальности не является случайной функцией параметров. В таких задачах почти с достоверностью можно описать необходимые условия осуществления действий (ограничения) и исходы этих действий. Параметры в этих задачах также не являются случайными величинами.

Стохастическими называются задачи, которые включают в себя неопределенность. Критерий оптимальности в таких задачах является некоторой характеристикой случайной функции параметров задачи. Неопределенность может возникнуть во многих случаях. Результаты некоторого действия могут зависеть от таких факторов, как погода, задержка автотранспорта, уровень занятости, повышение или падение покупательского спроса.

Класс детерминированных задач подразделяется на линейные задачи и нелинейные. Стохастические задачи можно тоже разбить на две группы, каждая из которых в свою очередь подразделяется на подгруппы.

В тех случаях, когда целевая функция (или критерий оптимальности) выражена линейно через исходные факторы, а условия, ограничивающие использование наличных ресурсов или факторов, записываются в виде линейных неравенств или равенств относительно искомых величин, мы приходим к задаче линейного программирования. Следует заметить, что в рамки линейного программирования укладывается огромное количество самых разнообразных задач перспективного и оперативного планирования хозяйства, управления различного рода процессами.

Почти параллельно с линейным программированием развивается нелинейное, представляющее значительно более сложную математическую задачу. В настоящее время еще нельзя говорить о законченной теории нелинейного программирования, но разработка ее осуществляется очень интенсивно. Из нелинейных задач выделяются задачи выпуклого программирования.

К задачам выпуклого программирования относятся задачи, у которых показатели качества и область определения оптимизируемой функции предполагаются выпуклыми. Между линейным и выпуклым программированием существует тесная связь. Любая выпуклая задача может быть сведена к задаче линейного программирования.

Среди задач выпуклого программирования подробнее других исследованы задачи квадратичного программирования. Для них характерно то, что функции цели представляют собой квадратичную форму, а ограничения линейны. Уже сейчас имеются методы для решения задач квадратичного программирования и более общего типа. Современная математическая наука располагает целым арсеналом методов, позволяющих решить задачу оптимального управления. Среди них особое место занимает метод динамического программирования. Специфика этого метода заключается в том, что для отыскания этого оптимального управления планируемая операции разделяется на ряд последовательных “шагов” или “этапов”. Соответственно и сам процесс планирования становится “многошаговым” и развивается последовательно от этапа к этапу, причем каждый раз оптимизируется управление только на одном этапе.

Если мы рассматриваем экономико-математическую модель не как застывшую задачу, а берем ее в динамике, желая найти решение на несколько периодов времени, то, естественно, возникает динамическая задача, и имеет смысл говорить о динамическом программировании. Динамические модели наиболее интересны для плановых расчетов, если плановую экономику рассматривать с точки зрения управляемых систем, а также при решении задач раскроя и др. задач.

Исследование задач, у которых коэффициенты ограничений, коэффициенты линейной формы, а также правые части ограничений зависят от параметра, составляет предмет параметрического программирования. В этой области еще много нерешенных проблем. Рассмотрен детально лишь частный случай, когда от параметра зависят коэффициенты линейной формы и правой части ограничений.

Целочисленными принято называть такие задачи линейного программирования, в которых переменные должны принимать лишь целые неотрицательные значения из допустимой области. Подобные задачи могут возникнуть различными путями. Прежде всего, существуют задачи, которые формально не относятся к целочисленным, но решения их при целых исходных данных автоматически получаются целочисленными. Такова известная транспортная задача и ее различные варианты.

Наиболее естественным источником целочисленных задач являются важнейшие в прикладном отношении задачи линейного программирования, в которых требуется составить план использования неделимых ресурсов (например, холодильников).

Целочисленное программирование приобретает особый интерес, потому что многие нелинейные выпуклые задачи математического программирования могут быть сведены к задачам линейного программирования с дополнительным требованием целочисленности решения.

Мы уже отмечали, что задачи, в которых нельзя пренебречь ошибками эксперимента, называются стохастическими. Это означает, что в такой задаче коэффициенты целевой функции и системы ограничений нельзя установить однозначно. А это приводит к тому, что с изменением одного или несколько коэффициентов изменяются оптимальные значения входящих в задачу параметров. Стандартные методы решения дают оптимальное решение только для определенного набора значений параметров, поэтому их использование здесь исключается.

Если для случайных величин, фигурирующих в задаче, известно вероятностное распределение, то говорят, что задача решается в условиях риска. Если вероятностное распределение неизвестно, то имеем задачу в условиях неопределенности. Примером задачи в условиях риска являются задачи управления запасами, а задачи специального стохастического анализа могут оказаться в условиях неопределенности. Из всех разделов математического программирования стохастическое наименее разработано.

2. Методические рекомендации