
- •Айала ф., Кайгер Дж. Современная генетика: в 3-х т. Т. 1. Пер. С англ.: – м.: Мир, 1987. – 295 с.
- •Электронное оглавление
- •9. Методы работы с днк 260
- •Предисловие редактора перевода
- •Предисловие
- •Структура книги
- •Особенности книги
- •Организация и передача генетического материала
- •I. Введение
- •Прокариоты: бактерии и сине-зеленые водоросли
- •Одноклеточные и многоклеточныеэукариоты
- •МейозIi
- •Значение мейоза
- •Литература
- •2.Менделевскаягенетика Первые представленияо наследственности
- •Открытие законов наследственности
- •Методы Менделя
- •Доминантность и рецессивность
- •Расщепление
- •Гены - носители наследственности
- •Независимое комбинирование
- •Тригибридные скрещивания
- •27 Гладкие желтые пурпурные
- •Множественные аллели
- •Генотип и фенотип
- •Литература
- •3. Хромосомныеосновы наследственности Гены и хромосомы
- •Наследование, сцепленное с полом
- •Нерасхождение х-хромосом
- •Вторичное нерасхождение
- •Сцепленное с полом наследование у человека и других видов
- •Определение пола
- •Отношение полов
- •Литература
- •4. Природа генетическогоматериала
- •Бактерии как экспериментальныйобъект
- •Экспериментальные исследованиябактериофагов
- •Нуклеиновые кислоты - наследственный материал вирусов
- •Химический состав и строениенуклеиновых кислот
- •Модель структуры днк Уотсона-Крика
- •Проверка модели Уотсона-Крика
- •Различные формы организациидвухцепочечной днк
- •Организация днк в хромосомах
- •Общие особенности репликации днк
- •Литература
- •5. Геномэукариот
- •Рекомбинация сцепленных генов
- •Генетические карты
- •Трехфакторные скрещивания
- •Генетическая интерференция
- •Когда происходит кроссинговер?
- •Мейоз у грибов
- •Цитологические наблюдениякроссинговера
- •Корреляция между генетическими и цитологическими картами хромосомдрозофилы
- •Внеядерная наследственность
- •Литература
- •6. Тонкая структура гена
- •Бактериофаг как генетическая система
- •СистемаrIi бактериофага т4
- •Природа мутаций в областиrIi
- •Функциональные особенностиrIi-мутаций
- •Цистрон
- •КартированиеrIi-мутаций с помощью делеций
- •Предельная разрешающая способностьрекомбинационного анализа
- •Уточнение генетической терминологии
- •Комплементационный анализу высших эукариот
- •Рекомбинационный анализтонкой структуры генау высших эукариот: дрозофила
- •Литература
- •7. Геномвируса
- •Размножение бактериофагов
- •Мутантные бактериофаги
- •Комплементационный анализусловно летальных мутаций фагаХ174
- •Рекомбинационный анализ мутантовфагаХ174
- •Умеренный бактериофагλ
- •Гены фагаλ
- •Профагλ
- •Сопоставление генетическойи физической карт фага а
- •Организация геномафагов т2 и т4
- •Литература
- •8. Бактериальныйгеном
- •МутантыЕ. Coli
- •Генетические элементыE.Coli
- •Физическое картирование бактериальных генов методомпрерванной конъюгации
- •Кольцевая форма геномаЕ. Coli
- •Подвижные генетические элементы (транспозоны)
- •Генетическое картированиеЕ. Coli
- •Конъюгационное картирование
- •Трансдукционное картирование
- •Обзор результатов генетического анализа
- •Литература
- •9.Методы работы с днк
- •Кинетика ренатурации днк
- •Рестрикция днк и ферменты модификации
- •Рестрикционный анализ молекул днк
- •Определение последовательности нуклеотидов в днк ( секвенирование )
- •Метод рекомбинантных днк
- •Векторы для клонирования днк
- •Библиотеки геномов
- •Обзор методов работы с днк
- •Литература
- •Оглавление
Комплементационный анализусловно летальных мутаций фагаХ174
Фаг фХ174-мелкий вирус, содержащий кольцевую одноцепочечную молекулу ДНК (рис. 7.3). После проникновения в клетку-хозяина синтезируется комплементарная цепь ДНК и образуется двухцепочечная молекула, которая затем в начале скрытого периода реплицируется по полуконсервативному механизму. После того как нарабатывается достаточное количество белков головки и начинается сборка фагов, ДНК начинает реплицироваться посредством видоизмененного сигма-механизма, при котором синтезируется только фаговая цепь, и в головку фагов включаются одноцепочечные кольцевые молекулы фаговой ДНК. Эта последовательность необходимых для размножения фага событий была расшифрована посредством генетического анализа.
В таблице 7.2 перечислены 39 условно летальных мутаций фага фХ174; все они лишают фаг способности к размножению при инфицировании в непермиссивных условиях. Для того чтобы определить, влияют ли две независимо возникшие мутации на одну и ту же генетическую функцию или на разные, можно использовать комплементационный тест, описанный в предыдущей главе. Бактериальные клетки одновременно заражают фагами обоих мутантных типов при непермиссивных условиях, например при температуре 42°С, если оба мутанта чувствительны к температуре. Если в таких дважды инфицированных бактериальных клетках потомство фагов возникает, можно сделать вывод, что каждый фаг осуществляет функцию, которую не может осуществить другой (см. рис. 6.6). Такие две мутации называются комплементарными и относятся к разным генам. Выполняемый таким образом тест на комплементацию полностью аналогичен описанному в гл. 6 для мутантов эукариот. Возникает как бы «диплоидная» инфицированная клетка, в которой хромосома каждого фага несет по одной мутации, и наблюдается «диплоидный» фенотип, т. е. потомство фага либо возникает, либо нет. Заметим, что для выполнения теста на комплементацию нам не надо определять генотип фагового потомства.
Комплементационный анализ перечисленных в табл. 7.2 мутантов показывает, что они относятся к восьми различным группам комплементации. Так, например, при заражении непермиссивных бактерий фагами am10 (цистрон D) и ат9 (цистрон G) их клетки лизируются, и, следовательно, потомство фагов возникает. Напротив, при заражении непермиссивного хозяина фага ат9 и ат32 потомство не возникает, и, следовательно, эти две мутации относятся к одной и той же группе комплементации (цистрон G). Если считать, что частота возникновения мутаций во всех генах примерно одинакова, то из факта, что в большинстве групп комплементации локализовано по нескольку мутаций, по-видимому, следует, что все эти мутации в совокупности затрагивают все важные гены фХ174. Другими словами, исследовано достаточное количество независимых мутаций для построения генетической карты. Далее мы увидим, что такое разделение на группы комплементации правильно отражает (за единственным исключением) механизм биохимического функционирования фага.
196Организация и передача генетического материала
Рис. 7.3. А. Электронная микрофотография фаговых частиц фХ174 ( x 190 000). Внизу справа - фрагменты фотографии, на которых видна организация субъединиц капсида. (Jeffrey Tromans, Dr. Robert W. Home, thé John Innés Institute, Norwich, England.). Б. Электронная микрофотография ДНК фага фХ174 в одноцепочечной и репликативной двухцепочечной форме ( x 21 000). Двухцепочечные молекулы на фотографии имеют вид более толстых и менее извитых нитей по сравнению с одноцепочечными. (Dr. Richard Junghans and Professor Norman Davidson, California Institute of Technology.) |
|
7. Геном вируса197
Таблица 7.2. Классификация мутантов фага фХ | |
Цистрон |
Мутанты |
А |
|
В |
|
С |
|
D |
|
E |
|
F |
|
G |
|
H |
|
По Benbow R. M. et. al. 1971. J. ViroL, 7, 549. |