- •1.Предмет, задачи и методы эконометрики.
- •2.1.Общие положения.
- •2.2. Метод наименьших квадратов
- •2.3. Свойства оценок полученных мнк.
- •3. Методика построения многофакторных корреляционных моделей для показателей эффективности хозяйственной деятельности
- •3.1. Выбор функционального показателя
- •3.2. Отбор факторов-аргументов
- •3.3. Выбор формы связи
- •3.4. Отбор исходных данных
- •3.5. Решение корреляционных моделей и экономико-математический анализ результатов решения
- •4.1.Оценка адекватности и точности регрессионных моделей. Общие положения.
- •4.2. Проверка случайности колебаний уровня остаточной последовательности.
- •4.3 Проверка соответствия распределения случайной компоненты нормальному закону распределения
- •4.4 Проверка равенства математического ожидания случайной компоненты нулю.
- •4.5. Проверка независимости значений уровней случайной компоненты.
- •4.6. Определение точности модели.
- •5. Исследование влияния факторов на изменение результирующего показателя в уравнении регрессии.
- •6. Оценка статистической надежности уравнения регрессии и ее последствия.
- •7.1.Гетероскедастичность остатков в уравнении регрессии и ее последствия.
- •7.2.1. Тест ранговой корреляции Спирмена.
- •7.2.2.Тест Голфенда-Квандта.
- •7.2.3 Тест Глейзера.
- •7.3 Методы устранения гетероскедастичности.
- •8.1 Автокорреляция (остатков) и связанные с ней факторы.
- •8.2. Обнаружение автокорреляции 1-го порядка. Критерий Дарбина – Уотсона
- •8.3.1. Устранение авт-ции, описываемой авторегрессионной схемой 1-ого порядка в общем случае. Поправка Прайса – Уинстена.
- •9. Мультиколлинеарность: способы ее обнаружения и устранения.
- •10. Обобщенный мнк и его исп-ие для оценки эфф-ти методов определения параметров уравнения регрессии.
- •11.1.Фиктивные переменные для пространственных выборок и временных рядов.
- •11.2.Фиктивные переменные для коэф-та наклона ур-ия регрессии.
- •11.3 Тест Чоу.
- •12.1 Линеаризация уравнения регрессии путем замены переменных.
- •12.2 Линеаризация уравнения регрессии с использованием логарфмического преобразования (степенные и показательные функции).
- •12.3 Представление случайного члена в преобразованных нелинейных ур-ях регрессии.
- •12.4 Определение параметров нелин-го ур-ия герессии, не приводимого к лин-му ур-ию.
- •12.5 Выбор вида ур-ия регрессии с использ-ем теста Бокса-Кокса.
- •13.4 Замещающие переменные и их использование при построении уравнения регрессии (общие сведения).
- •13.5. Время, как замещающая переменная при моделировании нтп в производственной функции Кобба-Дугласа
- •13.6 Непреднамеренное использование замещающих переменных.
- •13.7 Лаговые переменные и их использование пи построении уравнения регрессии(общие сведения).
- •14.1 Система линейных одновременных уравнений слоу (общие сведения)
- •14.2 Структурная и приведённая формы слоу.
- •14.3Косвенный метод наименьших квадратов (кмнк) и его использование для определения параметров слоу.
- •14.4 Метод инструментальных переменных (мип) и его применение для параметров уравнения регрессия (общий случай)
- •14.5 Метод инструментальной переменной (мип) и его применение для слоу.
- •14.6 Идентифицируемость слоу.
- •14.7 Двухшаговый метод наименьших квадратов.
- •14.8 Трехшаговый мнк.
9. Мультиколлинеарность: способы ее обнаружения и устранения.
Мульт-сть– это коррелир-ть двух или неск.объясняющих переменных в ур-ии регрессии. Оценка коэф-та ур-ия регрессии может оказаться незначимой не только из-за несущественности данного фактора, но и из-за того, что трудно разграничить воздействие на завершающую переменную 2-х или неск. факторов. Это обычно возникает в том сл.когда факторы линейно связаны м/д собой и меняются синхронно. Природу мульт-ти наиб.наглядно можно выявить на примересовершенной мульт-ти, т.е. в сл.если ф-ры функционально связаны друг с другом.
Пусть ур-ие регрессии им.вид: (1)(2)
Используя соотношение (1) и (2) можем переписать в сл.виде:
или
Используя иметодом наим.квадратов находим оценки:, но в этом сл.имеем одно ур-ие с 2-мя неизв-ми и следовательно найти значение оценокb1иb2невозможно.
В реальности им.несовершенную мульт-ть, т.е. стахост.линейную связь м/дx1иx2. Оценка этой связи находится путем расчета. Чем ближек 1, тем ближе несовершенная мульт-ть к совершенной, и тем менее надежными будут оценки коэф-та регрессии при этих переменных.
Небольшое смещение ведет к
большим изменениям признака
(график)
В эк.исследованиях счит.,что предельным значением коэф-та парной корреляции м/д двумя факторами д.б. 0,8
Устранение мульт-ти ведется путем искл-и одного из факторов из ур-ия регрессии. Искл-ют тот фактор, кот.:
по мнению исслед-ля считается менее значимым.
менее высокий коэф-т (r) с результат. Переменной (y).
более высокий rс др.факторами
Другие пути: изменить выборку
10. Обобщенный мнк и его исп-ие для оценки эфф-ти методов определения параметров уравнения регрессии.
Под обобщенным МНК будем понимать м-д опред-ия пар-ов ур-ия регрессии, кот.предполагает предварительное преобразование исх.данных, т.о. чтобы устранить гетероск-сть и автокор-цию остатков.
Согласно Доугерти, оценки ур-ия регрессии будут иметь желательные для МНК св-ва, если для преобразования ур-ий исп-ся истинные значения коэф-та ρ (показ-ля авток-ции остатков) и если сохранено первое наблюдение.
Учитывая данное положение можно сказать, что м-д Карно-Оркатто и Прайса-Уинстона работает лучше чем обычные МНК только для больших выборок.
Точность оценок ур-ия регрессии, опред-ых МНК, во многом зависят от закона изменения факториального признака и эту зависимость исследовали Парк и Митчелл. В своих исслед-ях они брали ур-ие регрессии вида:, у кот.случ.составляющая имела авт-цию, подчиняется авторегрессионной схеме 1-го порядка:
В качестве исх. данных для каждого взято 3 вида зависимостей:
1. простоы временной тренд
2. ежегодные данные о ВНП США. В данной зав-сти на фоне случ.отклонений прослеживается опред.зависимость (слабый временной тренд)
3. ежегод.инф-ция о коэф-те исп-ния произв.мощностей США. В этой зависимости временной тренд отсутствует.
Случ.составл-ая генерируется генератором случ.цифр. Размер выборки = 20, и для кождой зависимости было сделано по 1000 экспериментов. Определялась относительная эфф-сть оценки как обратная величина отношения среднеквадратич. ошибки в эксперименте к соотв.ошибке при определении параметров с помощью обычного МНК. На основании повторного исслед-ия сделаны след.выводы:
выигрыш в эфф-сти, обеспечиваемый заменой обычного МНК на м-д Карнана-Оркатто (СО) или СО-PW(Прайс-Уинстон), то выигрыш в эфф-сти обеспечивается при наличии неярко выраженного тренда и большом значенииρ
в условиях сильного тренда, обычный МНК м.б.эфф-ым даже при высоких значениях ρ.
исп-ие м-да СО в чистом виде значительно менее эфф-но, чем СО-PWкогда данные подвержены сильному тренду. В этом сл.м-д СО работает хуже, чем обычный МНК, следовательно, всегда более целесообразно исп-ть м-д СО-PW, сохраняющий 1-ое наблюдение. Кроме того, исслед-ия показали, что при наличии авт-ции необх. исп-ть более высокие уровни значимости 0-гипотезы.