
- •Министерство образования и науки, молодёжи и спорта украины
- •Содержание
- •Тема.1. Основные понятия и методология проектирования сложных обьектов и систем Лекция 1. Основные понятия и методология
- •1.1. Основные определения
- •1.2. Сущность процесса проектирования
- •1.3. Методология системного подхода к проблеме проектирования сложных систем
- •1.4. Системный подход к задаче автоматизированного проектирования технологического процесса
- •1.5. Системный анализ сложных процессов
- •1.6. Этапы проектирования сложных систем
- •Техническое задание
- •Этап нир
- •Этап окр
- •Этап разработки технического проекта объекта
- •Рабочее проектирование
- •Проектирование технологии изготовления спроектированного объекта
- •1.6. Контрольные вопросы и упражнения
- •Тема.2. Системный ( структурный ) уровень компьютерного проектирования сложных обьектов Лекция 2. Определение визуального моделирования
- •2.1. О пользе чертежей
- •2.2. По и другие инженерные объекты
- •2.3. Чертить по.
- •2.4. Метафора визуализации
- •2.5. Графовая метафора
- •2.6. Определение визуального моделирования
- •2.7. Средства визуального моделирования
- •2.8. О программных инструментах
- •2.9. Визуальное моделирование на фоне эволюции средств программирования
- •2.10. Семантический разрыв визуальных моделей и программного кода
- •2.11. Где выход?
- •2.12. Предметная область, модель, метамодель, метаметамодель.
- •2.13. Множество моделей по
- •2.14. Граф модели и диаграммы
- •2.15. Об операциях над графом модели и диаграммами
- •2.16. Контрольные вопросы
- •Лекция 3. Что такое The uml
- •3.1. Назначение языка
- •3.2. Историческая справка
- •3.3. Способы использования языка
- •3.4. Структура определения языка
- •3.5. Терминология и нотация
- •3.6. Контрольные вопросы
- •Лекция 4. Виды диаграмм uml
- •4.1. Почему нужно несколько видов диаграмм
- •4.2. Виды диаграмм
- •4.3. Диаграмма прецедентов (use case diagram)
- •4.4. Диаграмма классов (class diagram)
- •4.5. Диаграмма объектов (object diagram)
- •4.6. Диаграмма последовательностей (sequence diagram)
- •4.7. Диаграмма взаимодействия (кооперации, collaboration diagram)
- •4.8. Диаграмма состояний (statechart diagram)
- •4.9. Диаграмма активности (деятельности, activity diagram)
- •4.10. Диаграмма развертывания (deployment diagram)
- •4.11. Ооп и последовательность построения диаграмм
- •4.12. Контрольные вопросы
- •Лекция 5. Диаграмма классов: крупным планом
- •5.1. Как класс изображается на диаграмме uml?
- •5.2. А что внутри?
- •5.3. Как использовать объекты класса?
- •5.4. Всегда ли нужно создавать новые классы?
- •5.5. Отношения между классами
- •5.6. Контрольные вопросы
- •Лекция 6. Диаграмма активностей: крупным планом
- •6.1. А ведь это вовсе не блок-схема!
- •6.2. Примеры использования таких диаграмм
- •6.3. Советы по построению диаграмм активностей
- •6.4. Контрольные вопросы
- •Лекция 7. Диаграммы взаимодействия: крупным планом
- •7.1. Диаграммы последовательностей и их нотация
- •7.2. Диаграммы кооперации и их нотация
- •7.3. Рекомендации по построению диаграмм взаимодействия
- •7.4. Контрольные вопросы
- •Лекция 8: Диаграммы прецедентов: крупным планом
- •8.1. Несколько слов о требованиях
- •8.2. Диаграммы прецедентов и их нотация
- •8.3. Моделирование при помощи диаграмм прецедентов
- •8.4. Контрольные вопросы
- •Лекция 9: Элементы графической нотации диаграммы развертывания. Паттерны проектирования и их представление в нотации uml
- •9.1. Диаграмма развертывания, особенности ее построения
- •9.1.1. Узел
- •9.1.2. Соединения и зависимости на диаграмме развертывания
- •9.1.3. Рекомендации по построению диаграммы развертывания
- •9.2. Паттерны объектно-ориентированного анализа и проектирования, их классификация
- •9.2.1. Паттерны проектирования в нотации языка uml
- •9.2.2. Паттерн Фасад и его обозначение в нотации языка uml
- •9.2.3. Паттерн Наблюдатель и его обозначение в нотации языка uml
- •Лекция 10: Визуальное моделирование систем реального времени
- •10.1. Системы реального времени
- •10.2. Структурное подобие срв и аппаратуры
- •10.3. Многоуровневые открытые сетевые протоколы и блочная декомпозиция
- •10.4. Композитные компоненты
- •10.5. Интерфейс
- •10.6. Порт
- •10.7. Соединитель
- •10.8. Реактивные системы
- •10.9. Обзор примера
- •10.10. Контрольные вопросы
- •Лекция 11. Визуальное моделирование бизнес-процессов
- •11.1. Новая концепция бизнеса - ориентация на бизнес-процессы
- •11.2. Erp-системы
- •11.3. Моделирование бизнес-процессов
- •11.4. Пример бизнес-процесса
- •11.5. Декомпозиция бизнес-процессов
- •11.6. Исполняемая семантика бизнес-процессов
- •11.7. Бизнес-процессы и web-сервисы
- •11.8. Обзор bpmn
- •11.8.1. Действия (activities)
- •11.8.2. Связи (connecting objects)
- •11.8.3. Участники (swimlanes) бизнес-процесса
- •11.8.4. Порты (gateways)
- •11.9. Контрольные вопросы
- •12. Лекция: Этапы проектирования ис с применением uml
- •12.1. Разработка модели бизнес-прецедентов
- •12.2. Разработка модели бизнес-объектов
- •12.3. Разработка концептуальной модели данных
- •12.4. Разработка требований к системе
- •12.5. Анализ требований и предварительное проектирование системы.
- •12.6. Разработка моделей базы данных и приложений
- •12.7. Проектирование физической реализации системы
- •Тема.3. Математические модели обьектов проектирования Лекция 14. Математические модели объектов проектирования
- •14.1. Общие сведения о математических моделях
- •14.1.1. Компоненты математического обеспечения
- •14.1.2. Требования к математическим моделям и численным методам в сапр
- •14.1.3. Место процедур формирования моделей в маршрутах проектирования
- •14.2. Классификация математических моделей
- •14.3. Методика получения математических моделей элементов
- •14.3.1. Преобразование математических моделей в процессе получения рабочих программ анализа
- •14.3.2. Формализация получения математических моделей систем
- •Тема.4. Математическое обеспечение компьютерного проектирования Лекция 15. Математическое обеспечение компьютерного проектирования
- •15.1. Методы и алгоритмы анализа на макроуровне
- •15.2. Алгоритм численного интегрирования соду
- •15.3. Методы решения систем нелинейных алгебраических уравнений
- •15.4. Методы решения систем линейных алгебраических уравнений
- •15.5. Организация вычислительного процесса в универсальных программах анализа на макроуровне
- •15.6. Математическое обеспечение анализа на микроуровне
- •15.7. Методы анализа на микроуровне
- •15.8. Структура программ анализа по мкэ на микроуровне
- •15.9. Математическое обеспечение анализа на функционально–логическом уровне
- •15.10. Математические модели дискретных устройств
- •15.11. Методы логического моделирования
- •15.12. Математическое обеспечение анализа на системном логическом уровне
- •15.13. Аналитические модели смо
- •15.14. Имитационное моделирование смо
- •15.15. Событийный метод моделирования
- •15.16. Сети Петри
- •Тема.5. Интегрированные системы автоматического проектирования
- •16.2. Этапы развития информационных систем и технологий на машиностроительных предприятиях
- •16.3. Современные ит и их значение для предприятия
- •16.4. Жизненный цикл изделия
- •16.5. Обеспечение информационных систем на предприятии
- •16.6. Иерархия автоматизированных систем на предприятии
- •16.7. Общепроизводственные системы
- •Тема.6. Системы и технологии управления проектированием и
- •17.1.2. Программные продукты компании sap
- •17.1.2.1. Базисная технология системы r/3 фирмы sap
- •17.1.2.2. Sap erp
- •17.1.2.2. Sap plm
- •17.2. Информационная безопасность в cals-системах
- •17.2.1. Основные понятия и определения
- •17.2.2. Технологии построения защищенной сети виртуального предприятия
- •Лекция 18. Case – технологии Тема.7. Case-технологии компьютерного проектирования
- •Ibm Rational Rose
- •Visio поддерживает множество локальных языков
- •Тема.8. Case-средства анализа и синтеза проектных решений ис
- •Основы методологии проектирования ис
- •Структурный подход к проектированию ис
- •Состав функциональной модели
- •Иерархия диаграмм
- •Внешние сущности
- •Системы и подсистемы
- •Накопители данных
- •Потоки данных
- •Пример использования структурного подхода
- •Тема.9. Анализ, верификация и оптимизация проектных решений средствами сапр
- •Список литературы
Тема.4. Математическое обеспечение компьютерного проектирования Лекция 15. Математическое обеспечение компьютерного проектирования
15.1. Методы и алгоритмы анализа на макроуровне
Анализ процессов в проектируемых объектах можно производить во временной и частотной областях. Анализ во временной области (динамический анализ) позволяет получить картину переходных процессов, оценить динамические свойства объекта, он является важной процедурой при исследовании как линейных, так и нелинейных систем.
Анализ в частотной области более специфичен, его применяют, как правило, к объектам с линеаризуемыми ММ при исследовании колебательных стационарных процессов, анализе устойчивости, расчете искажений информации, представляемой спектральными составляющими сигналов,и т.п.
В качестве методов анализа во временной области, используемых в универсальных программах анализа в САПР, применяют методы интегрирования систем обыкновенных дифференциальных уравнений (СОДУ):
F(dV/dt, V, t) = 0.
Другими словами, это методы алгебраизации дифференциальных уравнений. Формулы интегрирования СОДУ могут входить в ММ независимо от компонентных уравнений, или быть интегрированными в ММ компонентов, как это выполнено в узловом методе.
От выбора метода решения СОДУ существенно зависят такие характеристики анализа, как точность и вычислительная эффективность.
Эти характеристики определяются прежде всего типом и порядком выбранного метода интегрирования СОДУ.
Применяют два типа методов интегрирования – явные (иначе экстраполяционные или методы, основанные на формулах интегрирования вперед), и неявные (интерполяционные, основанные на формулах интегрирования назад). Различия между ними удобно показать на примере простейших методов первого порядка – методов Эйлера.
Формула явного метода Эйлера представляет собой следующую формулу замены производных в точке tn:
dV/dt | n = (Vn+1 – Vn ) / hn,
где индекс равен номеру шага интегрирования; hn = tn+1-tn – размер шага
интегрирования (обычно hn называют просто шагом интегрирования). В
моделировании можно применять и дифференцирование назад:
dV/dt | n = (Vn–Vn–1 ) / hn,
где hn = tn – tn–1.
Выполним сравнительный анализ явных и неявных методов на
примере модельной задачи:
dV/dt = AV ,
при ненулевых начальных условиях V0 ≠0 и при использовании методов Эйлера с постоянным шагом h. Здесь А – постоянная матрица; V –вектор фазовых переменных.
При алгебраизации явным методом имеем
(Vn+1 – Vn ) / h = A Vn
Или
Vn+1 = (E + hA) Vn,
где Е – единичная матрица. Вектор Vn+1 можно выразить через вектор начальных условий V0:
Vn+1 = (E + hA)n V0.
15.2. Алгоритм численного интегрирования соду
Одна из удачных реализаций неявного метода второго порядка, которую можно считать модификацией метода трапеций, основана на комбинированном использовании явной и неявной формул Эйлера. Рассмотрим вопрос, почему такое комбинирование снижает погрешность и приводит к повышению порядка метода.
Предварительно отметим, что в методах р–го порядка локальная погрешность, т.е. погрешность, допущенная на одном n–м шаге интегрирования, оценивается старшим из отбрасываемых членов
δ=с||V(p+1)(τ)||hp+1
в разложении решения V(t) в ряд Тейлора, где с – постоянный коэффициент, зависящий от метода, ||V(p+1)(τ)|| – норма вектора (р+1)–х производных V(t), которая оценивается с помощью конечно–разностной аппроксимации, τ – значение времени t внутри шага.
Если n–й шаг интегрирования в комбинированном методе был неявным, т.е. выполненным по неявной формуле, то следующий шаг с тем же значением h должен быть явным. Используя разложение решения V(t) в ряд Тейлора в окрестностях точки tn+1, получаем для (n+1)–го неявного шага
V(tn ) = V(tn+1) – (dV/dt)hн + (d2V/dt2)hн2 / 2! – (d3V/dt3) hн3/ 3! + ...,
и для (n+2)–го явного шага
V(tn+2) = V(tn+1) + (dV/dt)hя + (d2V/dt2)hя2/2! + (d3V/dt3)hя3/3! + ...,
где hн и hя – величины неявного и явного шагов, а значения производных относятся к моменту tn+1.
Подставляя, при h = hя = hн получаем:
V(tn+2) = V(tn ) + 2(dV/dt)h + 2(d3V/dt3 )hя3 / 3! + ...,
т.е. погрешности, обусловливаемые квадратичными членами взаимно компенсируются, и старшим из отбрасываемых членов становится член с h3. Следовательно, изложенное комбинирование неявной и явной формул Эйлера дает метод интегрирования второго порядка.
Неявные методы и, в частности, рассмотренный комбинированный метод целесообразно использовать только при переменной величине шага. Действительно, при заметных скоростях изменения фазовых переменных погрешность остается в допустимых пределах только при малых шагах, в квазистатических режимах шаг может быть во много раз больше.
Алгоритмы автоматического выбора шага основаны на сравнении допущенной и допустимой локальных погрешностей. Например, вводится некоторый диапазон (коридор) погрешностей, в пределах которого шаг сохраняется неизменным. Если же допущенная погрешность превышает верхнюю границу диапазона, то шаг уменьшается, если же
выходит за нижнюю границу, то шаг увеличивается.