
- •Министерство образования и науки, молодёжи и спорта украины
- •Содержание
- •Тема.1. Основные понятия и методология проектирования сложных обьектов и систем Лекция 1. Основные понятия и методология
- •1.1. Основные определения
- •1.2. Сущность процесса проектирования
- •1.3. Методология системного подхода к проблеме проектирования сложных систем
- •1.4. Системный подход к задаче автоматизированного проектирования технологического процесса
- •1.5. Системный анализ сложных процессов
- •1.6. Этапы проектирования сложных систем
- •Техническое задание
- •Этап нир
- •Этап окр
- •Этап разработки технического проекта объекта
- •Рабочее проектирование
- •Проектирование технологии изготовления спроектированного объекта
- •1.6. Контрольные вопросы и упражнения
- •Тема.2. Системный ( структурный ) уровень компьютерного проектирования сложных обьектов Лекция 2. Определение визуального моделирования
- •2.1. О пользе чертежей
- •2.2. По и другие инженерные объекты
- •2.3. Чертить по.
- •2.4. Метафора визуализации
- •2.5. Графовая метафора
- •2.6. Определение визуального моделирования
- •2.7. Средства визуального моделирования
- •2.8. О программных инструментах
- •2.9. Визуальное моделирование на фоне эволюции средств программирования
- •2.10. Семантический разрыв визуальных моделей и программного кода
- •2.11. Где выход?
- •2.12. Предметная область, модель, метамодель, метаметамодель.
- •2.13. Множество моделей по
- •2.14. Граф модели и диаграммы
- •2.15. Об операциях над графом модели и диаграммами
- •2.16. Контрольные вопросы
- •Лекция 3. Что такое The uml
- •3.1. Назначение языка
- •3.2. Историческая справка
- •3.3. Способы использования языка
- •3.4. Структура определения языка
- •3.5. Терминология и нотация
- •3.6. Контрольные вопросы
- •Лекция 4. Виды диаграмм uml
- •4.1. Почему нужно несколько видов диаграмм
- •4.2. Виды диаграмм
- •4.3. Диаграмма прецедентов (use case diagram)
- •4.4. Диаграмма классов (class diagram)
- •4.5. Диаграмма объектов (object diagram)
- •4.6. Диаграмма последовательностей (sequence diagram)
- •4.7. Диаграмма взаимодействия (кооперации, collaboration diagram)
- •4.8. Диаграмма состояний (statechart diagram)
- •4.9. Диаграмма активности (деятельности, activity diagram)
- •4.10. Диаграмма развертывания (deployment diagram)
- •4.11. Ооп и последовательность построения диаграмм
- •4.12. Контрольные вопросы
- •Лекция 5. Диаграмма классов: крупным планом
- •5.1. Как класс изображается на диаграмме uml?
- •5.2. А что внутри?
- •5.3. Как использовать объекты класса?
- •5.4. Всегда ли нужно создавать новые классы?
- •5.5. Отношения между классами
- •5.6. Контрольные вопросы
- •Лекция 6. Диаграмма активностей: крупным планом
- •6.1. А ведь это вовсе не блок-схема!
- •6.2. Примеры использования таких диаграмм
- •6.3. Советы по построению диаграмм активностей
- •6.4. Контрольные вопросы
- •Лекция 7. Диаграммы взаимодействия: крупным планом
- •7.1. Диаграммы последовательностей и их нотация
- •7.2. Диаграммы кооперации и их нотация
- •7.3. Рекомендации по построению диаграмм взаимодействия
- •7.4. Контрольные вопросы
- •Лекция 8: Диаграммы прецедентов: крупным планом
- •8.1. Несколько слов о требованиях
- •8.2. Диаграммы прецедентов и их нотация
- •8.3. Моделирование при помощи диаграмм прецедентов
- •8.4. Контрольные вопросы
- •Лекция 9: Элементы графической нотации диаграммы развертывания. Паттерны проектирования и их представление в нотации uml
- •9.1. Диаграмма развертывания, особенности ее построения
- •9.1.1. Узел
- •9.1.2. Соединения и зависимости на диаграмме развертывания
- •9.1.3. Рекомендации по построению диаграммы развертывания
- •9.2. Паттерны объектно-ориентированного анализа и проектирования, их классификация
- •9.2.1. Паттерны проектирования в нотации языка uml
- •9.2.2. Паттерн Фасад и его обозначение в нотации языка uml
- •9.2.3. Паттерн Наблюдатель и его обозначение в нотации языка uml
- •Лекция 10: Визуальное моделирование систем реального времени
- •10.1. Системы реального времени
- •10.2. Структурное подобие срв и аппаратуры
- •10.3. Многоуровневые открытые сетевые протоколы и блочная декомпозиция
- •10.4. Композитные компоненты
- •10.5. Интерфейс
- •10.6. Порт
- •10.7. Соединитель
- •10.8. Реактивные системы
- •10.9. Обзор примера
- •10.10. Контрольные вопросы
- •Лекция 11. Визуальное моделирование бизнес-процессов
- •11.1. Новая концепция бизнеса - ориентация на бизнес-процессы
- •11.2. Erp-системы
- •11.3. Моделирование бизнес-процессов
- •11.4. Пример бизнес-процесса
- •11.5. Декомпозиция бизнес-процессов
- •11.6. Исполняемая семантика бизнес-процессов
- •11.7. Бизнес-процессы и web-сервисы
- •11.8. Обзор bpmn
- •11.8.1. Действия (activities)
- •11.8.2. Связи (connecting objects)
- •11.8.3. Участники (swimlanes) бизнес-процесса
- •11.8.4. Порты (gateways)
- •11.9. Контрольные вопросы
- •12. Лекция: Этапы проектирования ис с применением uml
- •12.1. Разработка модели бизнес-прецедентов
- •12.2. Разработка модели бизнес-объектов
- •12.3. Разработка концептуальной модели данных
- •12.4. Разработка требований к системе
- •12.5. Анализ требований и предварительное проектирование системы.
- •12.6. Разработка моделей базы данных и приложений
- •12.7. Проектирование физической реализации системы
- •Тема.3. Математические модели обьектов проектирования Лекция 14. Математические модели объектов проектирования
- •14.1. Общие сведения о математических моделях
- •14.1.1. Компоненты математического обеспечения
- •14.1.2. Требования к математическим моделям и численным методам в сапр
- •14.1.3. Место процедур формирования моделей в маршрутах проектирования
- •14.2. Классификация математических моделей
- •14.3. Методика получения математических моделей элементов
- •14.3.1. Преобразование математических моделей в процессе получения рабочих программ анализа
- •14.3.2. Формализация получения математических моделей систем
- •Тема.4. Математическое обеспечение компьютерного проектирования Лекция 15. Математическое обеспечение компьютерного проектирования
- •15.1. Методы и алгоритмы анализа на макроуровне
- •15.2. Алгоритм численного интегрирования соду
- •15.3. Методы решения систем нелинейных алгебраических уравнений
- •15.4. Методы решения систем линейных алгебраических уравнений
- •15.5. Организация вычислительного процесса в универсальных программах анализа на макроуровне
- •15.6. Математическое обеспечение анализа на микроуровне
- •15.7. Методы анализа на микроуровне
- •15.8. Структура программ анализа по мкэ на микроуровне
- •15.9. Математическое обеспечение анализа на функционально–логическом уровне
- •15.10. Математические модели дискретных устройств
- •15.11. Методы логического моделирования
- •15.12. Математическое обеспечение анализа на системном логическом уровне
- •15.13. Аналитические модели смо
- •15.14. Имитационное моделирование смо
- •15.15. Событийный метод моделирования
- •15.16. Сети Петри
- •Тема.5. Интегрированные системы автоматического проектирования
- •16.2. Этапы развития информационных систем и технологий на машиностроительных предприятиях
- •16.3. Современные ит и их значение для предприятия
- •16.4. Жизненный цикл изделия
- •16.5. Обеспечение информационных систем на предприятии
- •16.6. Иерархия автоматизированных систем на предприятии
- •16.7. Общепроизводственные системы
- •Тема.6. Системы и технологии управления проектированием и
- •17.1.2. Программные продукты компании sap
- •17.1.2.1. Базисная технология системы r/3 фирмы sap
- •17.1.2.2. Sap erp
- •17.1.2.2. Sap plm
- •17.2. Информационная безопасность в cals-системах
- •17.2.1. Основные понятия и определения
- •17.2.2. Технологии построения защищенной сети виртуального предприятия
- •Лекция 18. Case – технологии Тема.7. Case-технологии компьютерного проектирования
- •Ibm Rational Rose
- •Visio поддерживает множество локальных языков
- •Тема.8. Case-средства анализа и синтеза проектных решений ис
- •Основы методологии проектирования ис
- •Структурный подход к проектированию ис
- •Состав функциональной модели
- •Иерархия диаграмм
- •Внешние сущности
- •Системы и подсистемы
- •Накопители данных
- •Потоки данных
- •Пример использования структурного подхода
- •Тема.9. Анализ, верификация и оптимизация проектных решений средствами сапр
- •Список литературы
6.2. Примеры использования таких диаграмм
На практике диаграммы деятельности применяются в основном двумя способами:
Для моделирования процессов
В этом случае внимание фокусируется на деятельности с точки зрения экторов, которые работают с системой. Чуть ранее мы уже говорили о применимости диаграмм деятельности для описания бизнес-процессов. В случае такого использования диаграмм деятельности активно используются траектории объектов. Действительно, вспомним наш пример с гамбургером: изменив роли и деятельности, легко представить на его месте некий документ.
Для моделирования операций
В этом случае диаграммы деятельности играют роль "продвинутых" блок-схем и применяются для подробного моделирования вычислений. На первое место при таком использовании выходят конструкции принятия решения, а также разделения и слияния потоков управления ( синхронизации ).
Рассмотрим подробнее первый случай. Все мы, конечно, понимаем бизнес-процесс как последовательность неких действий, ведущую к достижению определенных бизнес-целей. Когда мы произносим это слово, в голове рождается множество ассоциаций, как то: люди, занимающие конкретные должности в управленческом аппарате (экторы), документы, которые они создают (артефакты, объекты), процесс принятия решений и передачи приказов по организационной цепочке (управляющие сигналы). Причем обычно все эти сущности связаны друг с другом просто невообразимым количеством явных и неявных связей, так что охватить взглядом целостную картину всего происходящего на предприятии обычно не так просто. А как же тогда все это моделируют?
Моделируют бизнес-процессы в несколько этапов, первым из которых является разбиение их на подпроцессы. Подпроцессы, являющиеся "участками большого процесса", описать легче. А там, глядишь, и составится целое из частей. Дальше выделяют ключевые объекты (и создают для них дорожки), определяют предусловия и постусловия каждого процесса (т. е. его границы), описывают деятельности и переходы, отображают на диаграммах состояния ключевых объектов, в которые они переходят в ходе процесса. Все это звучит довольно сложно, а на практике происходит еще сложнее: ведь создается не какая-то абстрактная диаграмма, а модель реального бизнес-процесса в реальной компании, занимающейся реальным бизнесом, где цена ошибки может быть очень высока. Чтобы окончательно не запугать читателя, приведем просто пример использования диаграммы активностей для описания процесса разработки ПО в OpenUP (рис.6.9):
Рис. 6.9. Пример использования диаграммы активностей для описания процесса разработки ПО в OpenUP
Выглядит, конечно, не совсем так, как мы привыкли, но все же, сомнений не остается - да, это именно диаграмма активностей. Нотация слегка отличается, но все понятно и без дополнительных пояснений.
Рефакторинг ( refactoring) — процесс изменения внутренней структуры программы, не затрагивающий её внешнего поведения и имеющий целью облегчить понимание её работы. В основе рефакторинга лежит последовательность небольших эквивалентных (то есть сохраняющих поведение) преобразований. Поскольку каждое преобразование маленькое, программисту легче проследить за его правильностью, и в то же время вся последовательность может привести к существенной перестройке программы и улучшению её согласованности и четкости.
Цель рефакторинга — сделать код программы легче для понимания; без этого рефакторинг нельзя считать успешным.
Рефакторинг следует отличать от оптимизации производительности. Как и рефакторинг, оптимизация обычно не изменяет поведение программы, а только ускоряет ее работу. Но оптимизация часто затрудняет понимание кода, что противоположно рефакторингу.
С другой стороны, нужно отличать рефакторинг от реинжиниринга, который осуществляется для расширения функциональности программного обеспечения. Как правило, крупные рефакторинги предваряют реинжиниринг.
Рефакторинг нужно применять постоянно при разработке кода. Основными стимулами его проведения являются следующие задачи:
необходимо добавить новую функцию, которая недостаточно укладывается в принятое архитектурное решение;
необходимо исправить ошибку, причины возникновения которой сразу не ясны;
преодоление трудностей в командной разработке, которые обусловлены сложной логикой программы.
А теперь перейдем к рассмотрению моделирования операций с помощью диаграмм активностей. Как мы уже говорили, в этом случае диаграмма активностей превращается в "продвинутую" блок-схему, предоставляющую дополнительные возможности, например, отображение параллельно выполняющихся операций. Возникает соблазн попытаться выполнить кодогенерацию такой диаграммы или даже откомпилировать ее и сразу получить выполняемый файл. Поспешим отметить, что вы не одиноки в таком желании - попыток создать пакет для генерации приложений непосредственно из диаграмм UML было предпринято множество. Некоторые даже оказались более-менее удачными - вспомним, например, Rational Rose Real Time. Таким образом, при моделировании операций UML становится языком визуального программирования!
Приведем пример моделирования одной из базовых алгоритмических конструкций, например, цикла с постусловием (рис.6.10):
Рис. 6.10. Пример моделирования одной из базовых алгоритмических конструкций