
- •Вопрос № 1.Белки. Разнообразие. Функции.
- •Вопрос № 2. Методы биохимии. Электрофорез.
- •Вопорос № 3. Хроматография.
- •Аффинная хроматография, или хроматография по сродству
- •Вопрос № 4. Методы количественного определения белка в растворе.
- •Вопрос № 5. Форма белков. Молекулярная масса.
- •Вопрос № 6. Аминокислоты. Пептиды.
- •Вопрос № 7. Первичная структура.
- •Вопрос № 8. Вторичная структура.
- •Вопрос № 9. Третичная структура белка.
- •Вопрос № 10. Четвертичная структура.
- •Вопрос № 11. Физико-химические свойства белков.
- •Вопрос № 12. Денатурация
- •Вопрос № 13. Коллоидные свойства растворов белков. Осаждение
- •Вопрос № 14. Классификация белков.
- •Вопрос № 15. Простые и сложные белки. Простетическая группа.
- •Вопрос № 16. Белки и лиганды. Активный центр белка.
- •Вопрос № 17. Связывание белка и лиганда.
- •Вопрос № 18. Доменная организация белков.
- •Вопрос № 19. Функциональное значение четвертичной структуры белка. Оперативность. Преимущества олигомеров над мономерами.
- •Преимущества белков с четвертичной структурой
- •Вопрос № 20
- •Вопрос № 21
- •Вопрос № 22
- •Каталитическая специфичность
- •Вопрос № 23
- •Вопрос № 24
- •Вопрос № 25
- •Вопрос № 26
- •Вопрос № 27
- •Неконкурентное ингибирование
- •I связывается с е также не в каталитическом центре, однако не со свободным е, а с комплексом еs, т.Е. Центр, связывающий I, становится доступным для I только после того, как свяжется s.
- •Вопрос № 29
- •Вопрос № 30
- •Особенности строения и функционирования аллостерических ферментов:
- •Вопрос № 31
- •Циклический гуанозинмонофосфат и Циклический аденозинмонофосфат – циклические формы нуклеотидов (производные гтф и атф.
- •Вопрос № 32
- •Вопрос № 33
- •Вопрос № 35
- •Вопрос № 36
- •Вопрос № 37
- •Классы ферментов
- •Вопрос № 38
- •Вопрос № 39
- •Вопрос № 40
- •Вопрос № 41
- •Вопрос № 42
- •Вопрос № 43
- •Вопрос № 44
- •Вопрос № 45
- •Единицы активности
- •Вопрос № 46
Особенности строения и функционирования аллостерических ферментов:
-
обычно это олигомерные белки, состоящие из нескольких протомеров или имеющие доменное строение;
-
они имеют аллостерический центр, пространственно удалённый от каталитического активного центра;
-
эффекторы присоединяются к ферменту нековалентно в аллостерических (регуляторных) центрах;
-
аллостерические ферменты обладают свойством кооперативности: взаимодействие аллостерического эффектора с аллостерическим центром вызывает последовательное кооперативное изменение конформации всех субъединиц, приводящее к изменению конформации активного центра и изменению сродства фермента к субстрату, что снижает или увеличивает каталитическую активность фермента;
-
регуляция аллостерических ферментов обратима: отсоединение эффектора от регуляторной субъединицы восстанавливает исходную каталитическую активность фермента;
-
аллостерические ферменты катализируют ключевые реакции данного метаболического пути.
Локализация аллостерических ферментов в метаболическом пути. Скорость метаболических процессов зависит от концентрации веществ, использующихся и образующихся в данной цепи реакций. Такая регуляция представляется логичной, так как при накоплении конечного продукта он (конечный продукт) может действовать как аллостерический ингибитор фермента, катализирующего чаще всего начальный этап данного метаболического пути:
Фермент, катализирующий превращение субстрата А в продукт В, имеет аллостерический центр для отрицательного эффектора, которым служит конечный продукт метаболического пути F. Если концентрация F увеличивается (т.е. вещество F синтезируется быстрее, чем расходуется), ингибируется активность одного из начальных ферментов. Такую регуляцию называют отрицательной обратной связью, или ретроингибированием. Отрицательная обратная связь - часто встречающийся механизм регуляции метаболизма в клетке.
В центральных метаболических путях исходные вещества могут быть активаторами ключевых ферментов метаболического пути. Как правило, при этом аллостерической активации подвергаются ферменты, катализирующие ключевые реакции заключительных этапов метаболического пути:
В качестве примера можно рассмотреть принципы регуляции гликолиза - специфического (начального) пути распада глюкозы . Один из конечных продуктов распада глюкозы - молекула АТФ. При избытке в клетке АТФ происходит ретро-ингибирование аллостерических ферментов фосфофруктокиназы и пируваткиназы. При образовании большого количества фруктозо-1,6-бисфосфата наблюдают аллостерическую активацию фермента пируваткиназы.
Вопрос № 31
В биологических системах часто встречается механизм регуляции активности ферментов с помощью ковалентной модификации аминокислотных остатков. Быстрый и широко распространённый способ химической модификации ферментов - фосфорилирование/дефосфорилирование. Модификации подвергаются ОН-группы фермента. Фос-форилирование осуществляется ферментами протеинкиназами, а дефосфорилирование - фосфопротеинфосфатазами. Присоединение остатка фосфорной кислоты приводит к изменению конформации активного центра и его каталитической активности. При этом результат может быть двояким: одни ферменты при фосфорилировании активируются, другие, напротив, становятся менее активными.
Изменение активности фермента, вызванное фосфорилированием, обратимо. Отщепление остатка фосфорной кислоты осуществляется ферментами фосфопротеинфосфатазами. Активность протеинкиназ и фосфопротеинфосфатаз регулируется гормонами, что позволяет быстро изменять активность ключевых ферментов метаболических путей в зависимости от условий внешней среды. Антагонистичные по функции гормоны противоположным образом влияют на фосфо-рилирование/дефосфорилирование ферментов, вызывая противоположные эффекты изменения метаболизма клетки.
Например, под действием глюкагона (в период между приёмами пищи) в клетках происходит уменьшение синтеза энергетического материала - жира, гликогена и усиление его распада (мобилизация), вызванного фосфо-рилированием ключевых ферментов этих процессов. А под действием инсулина (во время пищеварения), наоборот, активируется синтез гликогена и ингибируется его распад, так как взаимодействие инсулина с рецептором активирует сигнальный путь, приводящий к дефосфорилированию тех же ключевых ферментов.
В зависимости от источника энергии различают два вида фосфорилирования: субстратное и окислительное.
При субстратном фосфорилировании АТФ образуется при переносе богатого энергией фосфата с макроэргического субстрата (например, с креатинфосфата или с фосфоенолпирувата) на АДФ. Для такого фосфорилирования не требуется участия мембранных структур.
S~P + АДФ = S + АТФ
Окислительное (или мембранное) фосфорилирование происходит при участии мембран митохондрий, в которых происходит преобразование химической энергии в энергию электрохимического потенциала ионов водорода на мембране. Затем эта энергия вновь преобразуется в химическую энергию связей АТФ.
Протеинкина́зы — подкласс ферментов киназ (фосфотрансфераз). Протеинкиназы модифицируют другие белки путем фосфорилирования остатков аминокислот, имеющих гидроксильные группы (серин, треонин и ьтирозин) или гетероциклической аминогруппы гистидина. Протеинкиназы регулируют клеточный цикл, рост и дифференцировку клеток, апоптоз. Нарушения работы протеинкиназ приводят к различным патологиям, в том числе, к возникновению некоторых видов рака