
- •Высшая математика конспект лекций
- •1 Курс, 1 семестр
- •Содержание
- •Тема 1 «Элементы линейной алгебры» 7
- •Тема 2 «Элементы векторной алгебры» 22
- •Тема 3 «Элементы аналитической геометрии» 30
- •Тема 4 «Введение в анализ» 51
- •Тема 5 «Элементы дифференциального исчисления функции одной переменной» 66
- •Введение
- •Тематический план
- •§ 2. Определители 3-го порядка
- •§ 3. Миноры и алгебраические дополнения
- •§ 1. Определители высших порядков.
- •Система двух уравнений с двумя неизвестными
- •Система 3-х уравнений первой степени с 3-мя неизвестными
- •Понятие о матрицах
- •Сложение матриц и умножение их на число
- •Транспонирование матриц
- •Перемножение матриц
- •Решение систем линейных уравнений методом Гаусса
- •Решение систем 3-х уравнений с 3-мя неизвестными с помощью формул Крамера
- •Исследование систем линейных уравнений
- •§ 1. Общие понятия. Систему уравнений вида
- •§ 2. Система 2-х уравнений с 2-мя неизвестными
- •§ 3. Система 3-х уравнений с 3-мя неизвестными
- •Вопросы для самоконтроля
- •Тема 2 «Элементы векторной алгебры» Основные понятия
- •Линейные операции над векторами
- •Линейная зависимость и независимость векторов
- •Определение координат вектора в данном базисе
- •Системы координат и скалярное произведение векторов Декартова система координат
- •Полярная система координат
- •Скалярное произведение векторов.
- •Векторно-скалярное (смешанное) произведение
- •§ 1. Вычисление объема параллелепипеда
- •§3.Направляющие косинусы
- •Вопросы для самоконтроля
- •Тема 3 «Элементы аналитической геометрии»
- •П 4. Переход от полярных координат к декартовым и обратно
- •Простейшие задачи аналитической геометрии на плоскости п 1. Проекция отрезка на оси координат
- •П 2 .Расстояние между двумя точками на координатной плоскости
- •П 3. Деление отрезка в данном отношении
- •Линии и их уравнения п 1. Понятие уравнения линии
- •П 2. Примеры заданий линий при помощи уравнений
- •П 3. Получение линии как геометрического места точек
- •П 4. Параметрические уравнения линий
- •П 5. Алгебраические линии
- •Прямая на плоскости п 1. Угловой коэффициент
- •П 3. Уравнение прямой, проходящей через данную точку м1 (х1; у1)
- •П 8. Уравнение прямой в отрезках
- •П 9. Нормальное уравнение прямой
- •П. 10. Расстояние от точки до прямой
- •П. 11. Уравнение прямой в полярных координатах
- •П. 3 Эллипс и его каноническое уравнение
- •П.4 Эксцентриситет и директрисы эллипса
- •Гипербола и ее каноническое уравнение
- •П 6. Асимптоты гиперболы
- •П 7. Эксцентриситет и директрисы гиперболы
- •П. 8 Парабола и ее уравнение
- •П. 9 Уравнение эллипса, гиперболы и параболы в полярных координатах
- •Преобразование координат п. 1 Преобразование координат при параллельном сдвиге осей
- •П 3. Преобразование декартовых координат при изменении начала и поворота осей
- •П. 4 Преобразование общего уравнения второй степени не содержащего произведения переменных
- •П 5. Преобразование общего уравнения второго порядка
- •Аналитическая геометрия в пространстве Уравнение прямой
- •Понятие об уравнении плоскости.
- •Уравнения поверхностей
- •Вопросы для самоконтроля
- •Тема 4 «Введение в анализ» Переменные и постоянные величины. Понятие функции.
- •Основные характеристики функций.
- •Основные элементарные функции и их графики.
- •Числовая последовательность.
- •Предел функции.
- •Бесконечно малые величины.
- •Бесконечно большие функции.
- •Соотношение между бесконечно малыми и бесконечно большими функциями.
- •Основные теоремы о пределах.
- •Типы неопределенностей и способы их раскрытия.
- •Первый замечательный предел.
- •Эквивалентные бесконечно малые и основные теоремы о них.
- •Непрерывность функций.
- •Основные теоремы о непрерывных функциях.
- •Вопросы для самоконтроля
- •Тема 5 «Элементы дифференциального исчисления функции одной переменной» Определение производной.
- •Геометрический смысл производной.
- •Производные основных элементарных функций.
- •Производная сложной и обратной функции.
- •Дифференцирование неявно заданной функции.
- •Дифференцирование функции, заданной параметрически.
- •Логарифмическое дифференцирование.
- •Производные высших порядков.
- •Производные высших порядков неявно заданной функции.
- •Производные высших порядков от функций заданных параметрически.
- •Дифференциал функции.
- •Правила вычисления дифференциала.
- •Приложения производной.
- •Исследование функций при помощи производной.
- •Наибольшее и наименьшее значения функции на отрезке.
- •Вопросы для самоконтроля
- •Литература
Основные теоремы о пределах.
Теорема 1. Предел алгебраической суммы двух, трех и вообще определенного числа функций равен алгебраической сумме пределов этих функций, т.е.
Пример.
.
Теорема 2. Предел произведения двух, трех и вообще конечного числа функций равен произведению пределов этих функций:
.
Следствие 1. Постоянный множитель можно выносить за знак предела:
.
Следствие 2. Предел степени равен степени предела:
.
Пример.
.
Теорема 3. Предел частного двух функций равен частному пределов этих функций, если предел знаменателя отличен от нуля, т.е.
,
если
.
Примеры.
.
.
Типы неопределенностей и способы их раскрытия.
Часто при вычислении пределов какой-либо функции, непосредственное применение теорем о пределах не приводит к желаемой цели. Так, например, нельзя применять теорему о пределе дроби, если ее знаменатель стремится к нулю. Поэтому часто прежде, чем применять эти теоремы, необходимо тождественно преобразовать функцию, предел которой мы ищем.
Условные
выражения
характеризуют типы неопределенностей и применяются для обозначения переменных величин, при вычислении предела которых нельзя сразу применять общие свойства пределов.
Рассмотрим некоторые приемы раскрытия неопределенностей.
I.
Неопределенность
.
Числитель и знаменатель разложили на множители. Общий множитель
сократили, т.о. ушли от неопределенности.
При разложении числителя на множители воспользовались правилом деления многочлена на многочлен «углом». Так как число x=1 является корнем многочлена x3 – 6x2 + 11x– 6, то при делении получим
Числитель и знаменатель умножили на выражение сопряженное числителю.
II.
Неопределенность
.
.
При вычислении предела числитель и знаменатель данной дроби разделили на x в старшей степени.
.
Следующие
виды неопределенностей с помощью
алгебраических преобразований функции,
стоящей под знаком предела, сводят к
одному из рассмотренных выше случаев
или
.
III.
Неопределенность
IV. Неопределенность ∞ –∞.
Первый замечательный предел.
Читается: предел отношения синуса к его аргументу равен единице, когда аргумент стремится к нулю.
Примеры:
1.
2.
Второй замечательный предел.
(Раскрытие
неопределенности
.)
-
(*)
Если
положить
(
при
),
получим равенство
-
(**)
Равенства (*) и (**) называют вторым замечательным пределом.
Пример:
С числом е связана система логарифмов, более удобная, чем десятичная.
(называется
натуральный
логарифм).
Число
е
называют ещё неперовым
числом
(по имени одного из первых изобретателей
логарифмических таблиц Непера
(1550-1617)). Показательная функция
играет большую роль при изучении
различных явлений в механике (теория
колебаний), в электротехнике, радиотехнике.
Функцию
часто называют экспонентой и обозначают
.
Эквивалентные бесконечно малые и основные теоремы о них.
Опр.
Бесконечно малые функции
и
называются
эквивалентными, если
.
Обозначают
~
.
Например:
~
при
,
так как
;
~
при
,
так как
.
Приведем ещё примеры эквивалентных бесконечно малых функций.
1)
Покажем, что
при
.
Используем для этого определение
эквивалентных функций:
2)
при
.
.
Применяются
эквивалентные бесконечно малые функции
при вычислении пределов, для раскрытия
неопределенностей
.
Теорема: Предел отношения двух бесконечно малых функций не изменится, если каждую или одну из них заменить эквивалентной ей бесконечно малой.
Пример:
.
Важнейшие эквивалентности, которые используются при вычислении пределов, приведены в таблице.
1. |
|
6. |
|
2. |
|
7. |
|
3. |
|
8. |
|
4. |
|
9. |
|
5. |
|
10. |
в
частности
|