Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ответы по МатАну.docx
Скачиваний:
18
Добавлен:
08.02.2016
Размер:
468.87 Кб
Скачать

42 Вопрос:

-

43 Вопрос:

Метод прямоугольников — метод численного интегрирования функции одной переменной, заключающийся в замене подынтегральной функции на многочлен нулевой степени, то есть константу, на каждом элементарном отрезке. Если рассмотреть график подынтегральной функции, то метод будет заключаться в приближённом вычислении площади под графиком суммированием площадей конечного числа прямоугольников, ширина которых будет определяться расстоянием между соответствующими соседними узлами интегрирования, а высота — значением подынтегральной функции в этих узлах. Алгебраический порядок точности равен 0. (Для формулы средних прямоугольников равен 1).

Если отрезок является элементарным и не подвергается дальнейшему разбиению, значение интеграла можно найти по

  1. Формуле левых прямоугольников

  2. Формуле правых прямоугольников

  3. Формуле прямоугольников (средних): 

44 Вопрос:

Метод трапеций — метод численного интегрирования функции одной переменной, заключающийся в замене на каждом элементарном отрезке подынтегральной функции на многочлен первой степени, то есть линейную функцию. Площадь под графиком функции аппроксимируется прямоугольнымитрапециями. Алгебраический порядок точности равен 1.

Если отрезок является элементарным и не подвергается дальнейшему разбиению, значение интеграла можно найти по формуле

Это простое применение формулы для площади трапеции — произведение полусуммы оснований, которыми в данном случае являются значения функции в крайних точках отрезка, на высоту (длину отрезка интегрирования). Погрешность аппроксимации можно оценить через максимум второй производной

Если отрезок разбивается узлами интегрирования и на каждом из элементарных отрезков применяется формула трапеций, то суммирование дастсоставную формулу трапеций

  • Метод трапеций быстро сходится к точному значению интеграла для периодических функций, поскольку погрешность за период аннулируется.

  • Метод может быть получен путём вычисления среднего арифметического между результатами применения формул правых и левых прямоугольников.

Метод пораболы:

Формула Симпсона (также Ньютона-Симпсона[1]) относится к приёмам численного интегрирования. Получила название в честь британского математикаТомаса Симпсона (1710—1761).

Суть метода заключается в приближении подынтегральной функции на отрезке интерполяционным многочленом второй степени , то есть приближение графика функции на отрезке параболой. Метод Симпсона имеет порядок погрешности 4 и алгебраический порядок точности 3.

Формулой Симпсона называется интеграл от интерполяционного многочлена второй степени на отрезке :

где и  — значения функции в соответствующих точках (на концах отрезка и в его середине).

45 Вопрос:

12.1. Несобственные интегралы по неограниченному промежутку

(несобственные интегралы первого рода).

  • 12.1.1. Определение несобственного интеграла по бесконечному промежутку. Пусть функция f(x) определена на полуоси и интегрируема по любому отрезку [a,b], принадлежащему этой полуоси. Предел интеграла при называется несобственным интегралом функции f(x) от a до и обозначается Итак, по определению, . Если этот предел существует и конечен, интеграл называется сходящимся; если предел не существует или бесконечен, интеграл называется расходящимся.  Примеры: 1. ; этот предел не существует; следовательно, исследуемый интеграл расходится. 

  •  Признаки сравнения для неотрицательных функций. В этом разделе мы будем предполагать, что все подынтегральные функции неотрицательны на всей области определения. До сих пор мы определяли сходимость интеграла, вычисляя его: если существует конечный предел первообразной при соответствующем стремлении ( или ), то интеграл сходится, в противном случае - расходится. При решении практических задач, однако, важно в первую очередь установить сам факт сходимости, и только затем вычислять интеграл (к тому же первообразная часто не выражается через элементарные функции). Сформулируем и докажем ряд теорем, которые позволяют устанавливать сходимость и расходимость несобственных интегралов от неотрицательных функций, не вычисляя их.  12.1.3.1. Признак сравнения. Пусть функции f(x) и g(x) интегрируемы по любому отрезку [a,b] и при удовлетворяют неравенствам . Тогда:  если сходится интеграл , то сходится интеграл если расходится интеграл , то расходится интеграл  (эти утверждения имеют простой смысл: если сходится интеграл от большей функции, то сходится интеграл от меньшей функции; если расходится интеграл от меньшей функции, то расходится интеграл от большей функции; в случаях, когда сходится интеграл от меньшей функции или расходится интеграл от большей функции, никаких выводов о сходимости второго интеграла сделать нельзя).  Док-во: если , то функции и - монотонно возрастающие функции верхнего предела b (следствие свойств аддитивности и интегрирования неравенств). Монотонно возрастающая функция имеет конечный предел тогда и только тогда, когда она ограничена сверху. Пусть сходится. G(b) ограничена F(b) ограничена, т.е. сходится. Пусть расходится F(b) неограничена G(b) неограничена, т.е. расходится. 

Критерий Коши:  К. к. сходимости несобственных интегралов: пусть функция f определена на полуинтервале принимает на нем числовые значения и при любом интегрируема (по Риману или по Лебегу) на отрезке [ а, с]. Для того чтобы несобственный интеграл 

сходился, необходимо и достаточно, чтобы для любого существовало такое что для всех удовлетворяющих условию выполнялось неравенство 

Аналогичным образом критерий формулируется и для несобственных интегралов других типов, а также обобщается на случай, когда функция f зависит от нескольких переменных и ее значения лежат в банаховом пространстве.

Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.

Оставленные комментарии видны всем.