Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Ohrimenko+ / Barnsley. Superfractals

.pdf
Скачиваний:
69
Добавлен:
11.06.2015
Размер:
31.3 Mб
Скачать

440

Superfractals

T h e o r e m 5.18.5 For all V {1, 2, . . . } we have (V ) = (V ). That is, the set of all V -variable points in H( {1,2,...,N }) is the same as the set of all first components of the points belonging to the attractor of the hyperbolic IFS S(V ).

P r o o f is easy. The other direction is more subtle but should not cause you much difficulty. Otherwise consult [16].

5.19V -variability and what happens as V → ∞

Here we complete the explanation of how V -variable fractals provide a bridge between deterministic fractal sets and fully random fractal sets.

We can address the elements of Hsuper( {1,2,...,N }) by means of the continuous onto-mapping

ξsuper : {1,2,...,M} Hsuper {1,2,...,N }

defined by

ξsuper(σ1σ2 · · · ) = Iσ1 Iσ2 ··· for all σ {1,2,...,M},

where the code tree of Iσ1 Iσ2 ... Hsuper( {1,2,...,N }) is the unique one whose kth node, reading up from the bottom of the tree in the ordering shown in Figure 5.38, is associated with the set of integers Iσk for k = 1, 2, . . .

We use ξsuper to define a probability measure ρsuper on Hsuper( {1,2,...,N }), according to

ρsuper = ξsuper(ρ).

Here ρ P( {1,2,...,M}) is uniquely defined by its values on the cylinder sets Cω

{1,2,...,M}:

ρ(Cω ) = Pω1 Pω2 · · · Pω|ω|

for all ω {1,2,...,M}.

T h e o r e m 5.19.1 Let (V ) denote the set of V -variable subsets of {1,2,...,N }, and let ρ(V ) denote the associated probability distribution for the IFS S(V ) defined at the end of Section 5.18. Then

lim (V ) = Hsuper {1,2,...,N }

V →∞

with respect to the metric dH(H( {1,2,...,N } )) and

lim ρ(V ) = ρsuper V →∞

with respect to the metric dP(H( {1,2,...,N } )).

μ(V )

5.19 V -variability and what happens as V → ∞

441

P r o o f See Theorem 12 of [16], which provides the full proof in the case

where Lm = L for all m = 1, 2, . . . , M.

 

 

 

 

 

 

 

Accordingly, we introduce the notation

 

 

 

 

 

 

 

 

 

()

=

Hsuper

 

1,2,...,N }

,

ρ()

=

ρsuper,

 

 

(

)

 

 

(

{

)

,

(

)

 

(

)

.

A

 

= φFunderlying

μ

= φFunderlying ρ

Then in the spirit of Falconer [34], [35], Graf [41] and Mauldin and Williams [67] we make the following definition.

D e f i n i t i o n 5.19.2 We refer to the set of fractal sets A() distributed according to the probability distribution μ() as the random fractals associated with the superIFS {X; F1, F2, . . . , FM ; P1, P2, . . . , PM }.

Finally, we state the main result.

T h e o r e m 5.19.3 Let the superIFS {X; F1, F2, . . . , FM ; P1, P2, . . . , PM } be given. Let A(V ) denote the corresponding superfractal of V -variable sets and

denote the corresponding probability distribution. Then

lim A(V ) = A()

V →∞

with respect to the metric dH(H(X)), and

lim ρ(V ) = ρ()

V →∞

with respect to the metric dP(H(X)).

P r o o f This is just φFunderlying applied to Theorem 5.19.1.

 

What’s the point? Simply this. We can compute approximations to, and study, random fractals by working with V -variable fractals. The latter can be explored by means of the chaos game on superfractals and lead to a wealth of insights into random fractals. In particular, we see how random fractals may be thought of as V -variable fractals, but of infinite variability.

Similar results also relate V -variable fractal measures to the random fractal measures introduced by Arbeiter [1]; see [16]. In [19] the theory of V -variable fractal sets and measures, as presented in this chapter, is strengthened to admit the uniform Prokhorov metric in place of the Monge–Kantorovitch metric, in order to allow a separable complete metric space X to replace the compact metric space used here, and to admit IFSs that are ‘on average’ contractive. The Hausdorff dimensions of some V -variable fractals and other recent developments are discussed in [20] and [21].

442

Superfractals

5.20Final section

So, dear Diana and Rose and gentle reader, there you have it! When I started, three years ago, I hoped to weave more closely a relationship between art, biology and mathematics, to exhibit a new geometry of colour and space and to make the vision so compelling that it would almost leave the abstract world where it lives and become instead part of yours. You must be the judge of how far this book fulfils my aim; and I will keep trying to develop these ideas further at www.superfractals.com.

REFERENCES

[1]Arbeiter, Matthias. Random recursive construction of self-similar fractal measures. The noncompact case. Probab. Theory Related Fields 88 (1991), no. 4, 497–520.

[2]Asai, T. Fractal image generation with iterated function set. Ricoh Technical Report No. 24, November 1998, pp. 6–11.

[3]Barlow, M. T.; Hambly, B. M. Transition density estimates for Brownian motion on scale irregular Sierpinski gaskets. Ann. Inst. H. Poincare´ Probab. Statist. 33 (1997), no. 5, 531–557.

[4]Barnsley, M. F.; Demko, S. Iterated function systems and the global construction of fractals. Proc. Roy. Soc. London Ser. A 399 (1985), no. 1817, 243–275.

[5]Barnsley, M. F.; Ervin, V.; Hardin, D.; Lancaster, J. Solution of an inverse problem for fractals and other sets. Proc. Nat. Acad. Sci. USA 83 (1986), no. 7, 1975–1977.

[6]Barnsley, Michael F. Fractal functions and interpolation. Constr. Approx. 2 (1986), no. 4, 303–329.

[7]Barnsley, Michael F.; Elton, J. H. A new class of Markov processes for image encoding. Adv. Appl. Probab. 20 (1988), no. 1, 14–32.

[8]Barnsley, M. F.; Reuter, L.; Jacquin, A.; Malassenet, F.; Sloan, A. Harnessing chaos for image synthesis. Computer Graphics 22 (1988), 131–140.

[9]Barnsley, Michael. Fractals Everywhere. Boston MA, Academic Press, 1988.

[10]Barnsley, Michael F.; Elton, John H.; Hardin, Douglas P. Recurrent iterated function systems. Fractal approximation. Constr. Approx. 5 (1989), no. 1, 3–31.

[11]Barnsley, Michael F.; Harrington, Andrew N. The calculus of fractal interpolation functions. J. Approx. Theory 57 (1989), no. 1, 14–34.

[12]Barnsley, Michael F.; Hurd, Lyman P. Fractal Image Compression. Illustrations by Louisa F. Anson. Wellesley MA, A. K. Peters, 1993.

[13]Barnsley, Michael F. Fractals Everywhere, second edition. Revised with the assistance of and a foreword by Hawley Rising, III. Boston MA, Academic Press Professional, 1993.

443

444

References

[14]Barnsley, Michael F. Iterated function systems for lossless data compression. In Fractals in Multimedia (Minneapolis MN, 2001), pp. 33–63. IMA Vol. Math. Appl., vol. 132. New York, Springer, 2002.

[15]Barnsley, Michael F.; Barnsley, Louisa F. Fractal transformations. In The Colours of Infinity: The Beauty and Power of Fractals, pp. 66–81. London, Clear Books, 2004.

¨

[16] Barnsley, Michael; Hutchinson, John; Stenflo, Orjan. A fractal valued random iteration algorithm and fractal hierarchy. Fractals 13 (2005), no. 2, 111– 146.

[17] Barnsley, M. F. Theory and application of fractal tops. Preprint, Australian National University, 2005.

[18] Barnsley, M. F. Theory and application of fractal tops. In Fractals in Engineering: New Trends in Theory and Applications, J. L´evy-V´ehel; E. Lutton (eds.), pp. 3–20. London, Springer-Verlag, 2005.

¨ V

[19] Barnsley, M. F.; Hutchinson, J. E.; Stenflo, O. -variable fractals. In preparation.

¨ V

[20] Barnsley, M. F.; Hutchinson, J. E.; Stenflo, O. -variable fractals and dimensions. In preparation.

¨ V

[21] Barnsley, M. F.; Hutchinson, J. E.; Stenflo, O. -variable fractals and correlated random fractals. In preparation.

[22] Berger, Marc A. An Introduction to Probability and Stochastic Processes.

Springer Texts in Statistics. New York, Springer-Verlag, 1993.

[23] Berger, Marcel. Geometry, vols. I and II. Translated from the French by M. Cole and S. Levy. Universitext. Berlin, Springer-Verlag, 1987.

[24] Billingsley, Patrick. Ergodic Theory and Information. New York, London, Sydney, John Wiley & Sons, 1965.

[25] Brannan, David A.; Esplen, Matthew F.; Gray, Jeremy J. Geometry. Cambridge, Cambridge University Press, 1999.

[26] Coxeter, H. S. M. The Real Projective Plane. New York, McGraw-Hill, 1949. [27] Demko, S.; Hodges, L.; Naylor, B. Constructing fractal objects with iterated

function systems. Computer Graphics 19 (1985), 271–278.

[28] Diaconis, Persi; Freedman, David. Iterated random functions. SIAM Rev. 41 (1999), no. 1, 45–76.

[29] Dudley, Richard M. Real Analysis and Probability. Pacific Grove CA, Wadsworth & Brooks/Cole Advanced Books & Software, 1989.

[30] Dunford, N.; Schwartz, J. T. Linear Operators. Part I: General Theory, third edition. New York, John Wiley & Sons, 1966.

[31] Edgar, Gerald A. Integral, Probability, and Fractal Measures. New York, Springer, 1998.

[32] Eisen, Martin. Introduction to Mathematical Probability Theory. Englewood Cliffs NJ, Prentice-Hall, 1969.

References

445

[33]Elton, John H. An ergodic theorem for iterated maps. Ergodic Theory Dynam. Systems 7 (1987), no. 4, 481–488.

[34]Falconer, Kenneth. Random fractals. Math. Proc. Cambridge Philos. Soc. 100 (1986), no. 3, 559–582.

[35]Falconer, Kenneth. Fractal Geometry. Mathematical Foundations and Applications. Chichester, John Wiley & Sons, 1990.

[36]Fathauer, R. Dr. Fathauer’s Encyclopedia of Fractal Tilings. Version 1.0, 2000. http://members.cox.net/fractalenc.

[37]Feller, William. An Introduction to Probability Theory and its Applications, vol. I, third edition. New York, London, Sydney, John Wiley & Sons, 1968.

[38]Fisher, Yuval (ed.) Fractal Image Compression. Theory and Application. New York, Springer-Verlag, 1995.

[39]Forte, B.; Mendivil, F. A classical ergodic property for IFS: a simple proof.

Ergodic Theory Dynam. Systems 18 (1998), no. 3, 609–611.

[40]Gardner, Martin. Rep-tiles. The Colossal Book of Mathematics: Classic Puzzles, Paradoxes and Problems. pp. 46–58. New York, London, W. W. Norton & Co., 2001.

[41]Graf, Siegfried. Statistically self-similar fractals. Probab. Theory Related Fields 74 (1987), no. 3, 357–392.

[42]Grunbaum,¨ Branko; Shephard, G. C. Tilings and Patterns. New York, W. H. Freeman and Co., 1987.

[43]Hambly, B. M. Brownian motion on a random recursive Sierpinski gasket. Ann. Probab. 25 (1997), no. 3, 1059–1102.

[44]Hata, Masayoshi, On the structure of self-similar sets. Japan J. Appl. Math. 2 (1985), no. 2, 381–414.

[45]H´enon, M. A two-dimensional mapping with a strange attractor. Comm. Math. Phys. 50 (1976), no. 1, 69–77.

[46]Hoggar, S. G. Mathematics for Computer Graphics. Cambridge, Cambridge University Press, 1992.

[47]Horn, Alistair N. IFSs and the interactive design of tiling structures. In Fractals and Chaos, pp. 119–144. New York, Springer, 1991.

[48]Hutchinson, John E. Fractals and self-similarity. Indiana Univ. Math. J. 30 (1981), no. 5, 713–747.

[49]Hutchinson, John E.; Ruschendorf,¨ Ludger. Random fractal measures via the contraction method. Indiana Univ. Math. J. 47 (1998), no. 2, 471–487.

[50]Hutchinson, John E. Deterministic and random fractals. In Complex Systems, pp. 127–166, Cambridge, Cambridge University Press, 2000.

[51]Hutchinson, John E.; Ruschendorf,¨ Ludger. Selfsimilar fractals and selfsimilar random fractals. In Fractal Geometry and Stochastics, II

(Greifswald/Koserow, 1998), pp. 109–123. Progress in Probability, vol. 46. Basel, Birkh¨auser, 2000.

446

References

[52]Hutchinson, John E.; Ruschendorf,¨ Ludger. Random fractals and probability metrics. Adv. in Appl. Probab. 32 (2000), 925–947.

[53]Jacquin, Arnaud. Image coding based on a fractal theory of iterated contractive image transformations. IEEE Trans. Image Proc. 1 (1992), 18– 30.

[54]Kaandorp, Jaap A. Fractal modelling. Growth and Form in Biology. With a forward by P. Prusinkiewicz. Berlin, Springer-Verlag, 1994.

[55]Kaijser, Thomas. On a new contraction condition for random systems with complete connections. Rev. Roumaine Math. Pures Appl. 26 (1981), no. 8, 1075–1117.

[56]Katok, Anatole; Hasselblatt, Boris. Introduction to the modern theory of dynamical systems. With a supplementary chapter by Anatole Katok and Leonardo Mendoza. In Encyclopedia of Mathematics and Its Applications, vol. 54. Cambridge, Cambridge University Press, 1995.

[57]Keeton, W. T.; Gould, J. L.; Gould, C. G. Biological Science, fifth edition. New York, London, W. W. Norton & Co., 1993.

[58]Kieninger, B. Iterated Function Systems on Compact Hausdorff Spaces.

Aachen, Shaker-Verlag, 2002.

[59]Kifer, Yuri. Fractals via random iterated function systems and random geometric constructions. In Fractal Geometry and Stochastics (Finsbergen, 1994), pp. 145–164. Progress in Probability, vol. 37. Basel, Birkh¨auser, 1995.

[60]Kunze, H.; Vrscay, E. Inverse problems for ODEs using the Picard contraction mapping. Inverse Problems 15 (1999).

[61]Lasota, A.; Yorke, James A. On the existence of invariant measures for piecewise monotonic transformations. Trans. Amer. Math. Soc. 186 (1973), 481– 488.

[62]Lu, N. Fractal Imaging. San Diego, Academic Press, 1997.

[63]Mandelbrot, Benoit B. Fractals: Form, Chance, and Dimension. Translated from the French. Revised edition. San Francisco, W. H. Freeman and Co., 1977.

[64]Mandelbrot, Benoit B. The Fractal Geometry of Nature. San Francisco, W. H. Freeman, 1983.

[65]Mandelbrot, Benoit B. A multifractal walk down Wall Street. Scientific American, February 1999, 70–73.

[66]Massopust, Peter R. Fractal Functions, Fractal Surfaces, and Wavelets. San Diego CA, Academic Press, 1994.

[67]Mauldin, R. Daniel; Williams, S. C. Random recursive constructions: asymptotic geometrical and topological properties. Trans. Amer. Math. Soc. 295 (1986), no. 1, 325–346.

References

447

[68]Mauldin, R. Daniel; Williams, S. C. Hausdorff dimension in graph directed constructions. Trans. Amer. Math. Soc. 309 (1988), no. 2, 811–829.

[69]McGhehee, Richard. Attractors for closed relations on compact Hausdorff spaces. Indiana Univ. Math. J. 41 (1992), no. 4, 1165–1209.

[70]Mendelson, Bert. Introduction to Topology, British edition. London, Glasgow, Blackie & Son, 1963.

[71]Mochizuki S.; Horie, D.; Cai, D. Stealing Autumn Color. ACM SIGGRAPH poster, 2005. See http://mochi.jpn.org/temp/mochipdf.zip.

[72]Moran, P. A. P. Additive functions of intervals and Hausdorff measure. Proc. Cambridge Philos. Soc. 42 (1946), 15–23.

[73]Mumford, David; Series, Caroline; Wright, David. Indra’s Pearls. The Vision of Felix Klein. New York, Cambridge University Press, 2002.

[74]Navascu´es, M. A. Fractal polynomial interpolation. Z. Anal. Anwendungen 24 (2005), no. 2, 401–418.

[75]Nitecki, Zbigniew H. Topological entropy and the preimage structure of maps. Real Anal. Exchange 29 (2003/4), no. 1, 9–41.

[76]Onicescu, O.; Mihok, G. Sur les chaˆınes de variables statistiques. Bull. Sci. Math. de France 59 (1935), 174–192.

[77]Parry, William. Symbolic dynamics and transformations of the unit interval.

Trans. Amer. Math. Soc. 122 (1966), 368–378.

[78]Peitgen, H.-O.; Richter, P. H. The Beauty of Fractals. Images of Complex Dynamical Systems. Berlin, Springer-Verlag, 1986.

[79]Peruggia, Mario. Discrete Iterated Function Systems. Wellesley MA, A. K. Peters, 1993.

[80]Prusinkiewicz, Przemyslaw; Lindenmayer, Aristid. The Algorithmic Beauty of Plants. With the collaboration of James S. Hanan, F. David Fracchia, Deborah R. Fowler, Martin J. M. de Boer and Lynn Mercer. The Virtual Laboratory. New York, Springer-Verlag, 1990.

[81]Rachev, Svetlozar T. Probability Metrics and the Stability of Stochastic Models. Wiley Series in Probability and Statistics. Chichester, John Wiley & Sons, 1991.

[82]R´enyi, A. Representations for real numbers and their ergodic properties. Acta Math. Acad. Sci. Hungar. 8 (1957), 477–493.

[83]Ruelle, David. Zeta-functions for expanding maps and Anosov flows. Invent. Math. 34 (1976), no. 3, 231–242.

[84]Sagan, Hans. Space-Filling Curves. Universitext. New York, SpringerVerlag, 1994.

[85]Scealy, R. V-Variable Fractal Interpolation. In preparation.

[86]Schattschneider, D. M. C. Escher: Visions of Symmetry, second edition. New York, Harry N. Abrams, 2004.

448

References

[87]Scientific Workplace 4.0. MacKichan Software, 2002.

[88]Shields, Paul C. The Ergodic Theory of Discrete Sample Paths. Graduate Studies in Mathematics, vol. 13. Providence RI, American Mathematical Society, 1996.

[89]Solomyak, Boris. Dynamics of self-similar tilings. Ergodic Theory and Dynam. Systems 17 (1997), no. 3, 695–738. Corrections in Ergodic Theory

and Dynam. Systems 19 (1999), no. 6, 1685.

¨

[90] Stenflo, Orjan. Markov chains in random environments and random iterated function systems. Trans. Amer. Math. Soc. 353 (2001), no. 9, 3547–3562.

¨

[91] Stenflo, Orjan. Uniqueness of invariant measures for place-dependent random iterations of functions. In Fractals in Multimedia (Minneapolis MN, 2001), pp. 13–32. IMA Vol. Math. Appl. New York, Springer-Verlag, 2002.

[92] Stewart, Ian; Clarke, Arthur C.; Mandelbrot, Benoˆıt; et al. In The Colours of Infinity: The Beauty and Power of Fractals. London, Clear Books, 2004.

[93] Szoplik, T. (ed.) Selected Papers on Morphological Image Processing: Principles and Optoelectronic Implementations. Vol. MS 127, SPIE. Optical Engineering Press, 1996.

[94] The history of mathematics. In The New Encyclopaedia Britannica, fifteenth edition, vol. II, pp. 656–657. Chicago, London, 1979.

[95] Tosan, Eric; Excoffier, Thierry; Rondet-Mignotte, Martine. Cr´eation de formes et de couleurs avec les IFS. Preprint 2005. Universit´ Claude Bernard, France.

[96] Tricot, Claude. Curves and Fractal Dimension. With a foreword by Michel Mend`es France. Translated from the 1993 French original. New York, Springer-Verlag, 1995.

[97] Vrscay, Edward R. From fractal image compression to fractal-based methods in mathematics. In Fractals in Multimedia (Minneapolis MN, 2001), pp. 65– 106. IMA Vol. Math. Appl., vol. 132. New York, Springer, 2002.

[98] Werner, Ivan. Ergodic theorem for contractive Markov systems. Nonlinearity 17 (2004), no. 6, 2303–2313.

INDEX

accumulation point, 38, 50 address, 8, 16, 17

of panel, 240 of tile, 218

address function, 17

addresses of orbital picture set, 241 affine geometry, 297, 300, 301 affine orbital picture, 297

affine transformation, 132, 136 alphabet, 17

attractor, 1, 2

of a dynamical system, 276 autonomous system, 209, 210, 211

basis, 42

beech tree leaf, 156 Bernoulli convolutions, 352 β-numbers, 265

biological modelling, 194, 278, 327, 423 Birkhoff’s ergodic theorem, 323

Borel measure, 107, 110, 111, 113, 206, 280 Borel set, 111

Borel subset, 107 boundary, 52

branch transformation, 183, 187 buttercup, 300

buttercup field, 247, 264

calyx sets, 82

canonical sequence of pictures, 225, 228 Cantor set, 75, 339

Cauchy sequence, 33, 78

chaos game, 1, 5, 323, 324, 394, 400, 410, 418 chaos-game algorithm, 343

classical euclidean tiling, 299 clingfilm transformation, 37 closed set, 38

closure, 38

code space, 5, 8, 16, 17, 57, 74, 110, 183, 184, 188, 189, 194, 209

of orbital picture, 239, 241 code space structure, 298 code structure, 359, 372

homeomorphic, 360

code tree, 434

collage theorem, 139, 327 collinear points, 158 colour of picture, 92

transformation of, 242 colour components, 92 colour space, 92, 224

colour-stealing, 5, 313, 325, 334, 343, 345, 365, 366, 368

compact metric space, 172 compact set, 21, 55 complete metric space, 78 completeness, 78

complex analytic dynamics, 222

computer graphics, 194, 279, 327, 331, 345 concatenated string, 17

condensation measure, 215, 296 condensation picture, 215, 296 condensation set, 215, 296 conic section, 175

conjugate semigroup, 291 connected space, 50 continuous function, 35, 36, 39 continuous mapping, 48 continuous semigroup, 211 contraction factor, 116 contraction mapping, 116

contraction mapping theorem, 116 contractive IFS, 208

contractive transformation, 116, 119 convergent sequence, 33

countable basis, 42, 44 covering of a space, 54

finite, 55 open, 55

cross-ratio, 179, 296 cryptography, 279 crystallographic group, 294, 299 cylinder set, 21, 44

dance, 155

of the conics, 158 of the lines, 156 of the points, 154

449

Соседние файлы в папке Ohrimenko+