Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

material1 / different / Chung-Yu Wu - Analog Circuit Design

.pdf
Скачиваний:
51
Добавлен:
05.06.2015
Размер:
29.49 Mб
Скачать

8 - 36

CHUNG-YU WU

Circuit implementation

3. Rail-to-rail very LV CMOS OP AMP with input dynamic level-shifting circuit

MAIN TRANSISTOR ASPECT RATIOS (IN μm) AND ELEMENT VALUES OF THE AMPLIFIER BASED ON COMPLEMENTARY PAIRS

M1A,M1B

400/5

M15

700/2

M2A,M2B

200/5

R1-R4

30 KΩ

M1,M2

400/2

RM

5 KΩ

M3,M4

200/2

C M

10pF

M5-M8

400/5

I bn = I bp

10μA

M9-M12

500/5

Io

40μA

 

 

 

 

8 - 37

4. Input CM adapter

 

CHUNG-YU WU

Vx = A[2V

- (V

+ + V - )]

ref

 

i,p

i,p

= 2A(Vref

− Vi,p,cm )

I = Gm Vx

 

 

 

 

 

=> Vi,p,cm Vref

+

 

Vi,cm

 

2RGmA

 

 

 

Vi,p,dm = Vi,dm

*Vi,cm is degraded by A and Vi, p ,cm Vref

Circuit implementation:

5. Very LV CMOS OP AMP with a single differential pair and the input CM adapter.

8 - 38

YU WU

Main transistor ratios(in μm) and element values of the amplifier based on a single input pair

M1A M1B

1000/6

M6

1600/2

 

 

 

 

M2A M2B

600/4

M7-M10

300/4

 

 

 

 

MA1-MA4

50/2

M11

700/2

 

 

 

 

MA5-MA6

300/4

R1-R2

15KΩ

M2D

150/2

RM

5KΩ

M1,M2

200/2

CM

5pF

M3-M5

400/2

Is=Ir/2

10μA

 

 

 

 

6.Measured results

Experimental performance of amplifiers(Vsupply=1V,technology:1.2μm CMOS, CL=15pF)

Parameter

Dynamic-shifting amp

CM adapater amp

 

 

 

Active die area

0.81mm 2

0.26 mm 2

Ido(supply current)

410uA

 

208uA

 

DC gain

87dB

 

70.5dB

 

unity-gain frequency

1.9Mhz

 

2.1Mhz

 

 

 

 

 

 

Phase margin

61°

 

73°

 

 

 

 

 

 

SR+

0.8V/us

 

0.9V/us

 

SR-

1V/us

 

1.7V/us

 

 

 

 

 

 

THD(0.5Vpp@1kHz)

-54dB

 

-77dB

 

THD(0.5Vpp@40kHz

-32dB

 

-57dB

 

 

 

 

 

 

Vni(@1KHz)

267nV/

Hz

359nV/

Hz

Vni(@10KHz)

91nV/

Hz

171nV/

Hz

Vni(@1MHz)

74nV/

Hz

82nV/

Hz

CMRR

62dB

 

58dB

 

PSRR+

-54.4dB

 

-56.7dB

 

PSRR-

-52.1dB

 

-51.5dB

 

 

 

 

 

 

§8-5.3 1.5V High Drive Capability CMOS OP AMP

Ref.: IEEE JSSC vol.34, no.2, pp. 248-252, Feb. 1999

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8 - 39

1. Folded-mirror differential input stage

 

 

 

 

 

 

 

+VDD

CHUNG-YU WU

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VBIAS2

 

 

 

 

 

M3

 

 

 

 

 

M4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VCM £ VGS 6,7 +VTHn = 2VTHn + DV6,7

 

 

 

 

 

 

 

 

 

 

 

 

 

OUT

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VCM ³ VDSsat 5 +VGS 1,2

= 2VTHn

+ DV5

+ DV1,2

M1

M2

CMR = VTHn V5

 

 

IN+

 

 

 

IN-

 

 

 

 

V : overdrive voltage.

VBIAS1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M5

M6

 

 

 

 

 

M7

CMR is independent of supply voltage.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For VDD=1.5V , CMR=0.6 ~ 0.7V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-VSS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CMR of the conventional NMOS-input differential pair is 0.3-0.5V

2. Output Stage

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+VDD

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IB1

 

A

IN

M1A M3A

 

M6A M8A

OUT

M5A M7A

M4A

IB2

B

M2A

-VSS

Input section : M1A-M4A , IB1 , IB2

Output section: M5A-M6A and M7A-M8A

M5A, M8A sat

M6A, M7A off.

For low input levels , M6A and M7A off è Class A operation. For large positive input signals,

ID1A=IB1 è M3A and M5A OFF

èVA-VSS

èM6A is turned on to supply most of the output current.

But M7A remains cutoff.

The current of M8A is increased.

For large negative input signals, M7A supplies most of the output current. (W/L)5A,8A << (W/L)6A,7A for low dc power dissipation and high drive.

8 - 40

3. Overall LV CMOS OP AMP.

CHUNG-YU WU

 

 

 

 

+VDD

 

 

 

 

M15

M3

M6

M7

 

M18

M6A M8A

M4A M11

M12

IBIAS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M8

 

 

 

 

 

 

 

 

 

CC3A

OUT

CC3B

 

 

M1

M2

 

 

 

 

IN-

MC CC2

CC1

 

 

 

 

 

IN+

 

 

 

M14

M4

 

M5

 

M9

 

 

 

 

M16

 

 

 

 

M1A

M5A M7A

M2A

M13

 

 

 

 

 

 

 

 

 

 

 

M3A

 

 

 

 

 

 

 

-VSS

 

 

 

 

Dominant pole :

Wp1≈

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

ro5,7{(gm8ro8,9 )2[gm5A,8A(ro5A || ro8A )]}Cc

 

 

Gain-bandwidth product: WGBW

g m1,2

 

 

 

 

Cc1

 

 

 

 

 

 

 

 

 

 

 

 

 

Hybrid nested Miller compensation:

CC1, CC2, CC3A,B

 

 

 

The inner amplifier M8,M9,M1A~M8A contributes the nondominant poles.

 

* The two-stage OP AMP M1~M9 has a gain-bandwidth product of

gm1,2

 

 

 

Cc 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and the gain of

 

 

gm1,2

 

at high frequency. The gain of M1-M7 at high frequency is

 

 

sCc2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

gm1,2

. Thus the gain of the gain stage M8 and M9 is approximately equal to

C

C1

.

 

sCc1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CC 2

* The open-loop gain of the inner amplifier is

 

 

 

 

 

 

 

 

æ

CC 1

öæ g

m1 A,2 A

ö

 

(r

 

)

 

 

 

 

 

 

A @ -ç

֍

 

÷2g

 

r

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

in

ç C

 

 

֍ g

 

 

 

 

÷

m 5 A,8 A

o 5 A

o8 A

 

 

 

 

 

 

 

 

è

 

 

C 2

è

 

m3 A,4 A

ø

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ø

 

 

 

 

 

 

 

 

 

 

 

 

Dominant pole : ωP1in

 

 

 

 

 

g m3A,4 A

 

 

 

 

 

 

 

 

 

g m5 A,8 A (ro 5A || ro8A )CC 3A,B

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Second pole : ωP 2in

 

2g m5A,8A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CL

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CC 3A,B
@ 2 CC1
CC 2
g m1A,2A

8 - 41

CHUNG-YU WU

Gain-bandwidth product : ωGBWin or the second pole of the

whole amplifier

Design consideration :

To obtain a maximally flat Butterworth response without gain peaking, we have the unity-gain frequency equal to one half of the second-pole frequency.

ω

= ω =

 

1

ω

 

 

 

 

 

 

GBWin

 

uin

2

P2in

 

 

 

 

 

 

 

 

ω

= ω =

1

ω =

1

ω

 

 

GBW

u

2

 

 

uin

2

GBWin

 

 

 

 

 

 

Reference : IEEE JSSC, vol.27, pp.1709-1716, Dec. 1992.

Setting 2CC 3A,B = CC 2 ,

 

we have

 

 

CC1 = 2

gm1,2

 

C L

 

 

 

 

 

 

 

 

 

 

 

 

 

gm5 A,8 A

 

 

 

 

 

CC 2 = 2CC 3A,B

=

2g m1,2 g m1A,2A ×

 

C L

 

g m5 A,8 A

 

 

 

 

 

 

 

 

Component values :

 

 

 

 

 

 

 

 

 

 

 

 

M1,M2,M3,M9,M1A,M2A,M10

 

60/2

 

 

 

 

 

 

 

 

 

M4,M5,M11,M12,M13

 

 

 

20/2

 

 

 

 

 

 

 

 

 

M6,M7

 

 

 

15/2

 

 

 

 

 

 

 

 

 

M8

 

 

 

90/2

 

 

 

 

 

 

 

 

 

M3A

 

 

 

5/1.2

 

 

 

 

 

 

 

 

M4A

 

 

 

15/1.2

 

 

 

 

 

 

 

M5A

 

 

 

30/1.2

 

 

 

 

 

 

 

M7A

 

 

 

120/1.2

 

 

 

 

 

 

 

M6A

 

 

 

360/1.2

 

 

 

 

 

 

 

M8A

 

 

 

90/1.2

 

 

 

 

 

 

 

M14,M16

 

 

 

10/1.2

 

 

 

 

 

 

 

 

M15,MC

 

 

 

30/2

 

 

 

 

 

 

 

 

 

CC1

 

 

 

4pF

 

 

CC2

 

 

 

6pF

 

 

CC3A,CC3B

 

 

 

2pF

 

 

IBIAS

 

 

 

5uA

 

 

VTH

 

 

 

0.8V

 

 

8 - 42

CHUNG-YU WU

Experimental results:

MEASURED MAIN PERFORMANCE

Open-Loop Gain

68dB

 

 

GBW

1MHz

 

 

Phase Margin

65o

Gain Margin

16dB

 

 

Settling Time(0.1%), V = 200mV

400ns

 

 

Slew Rate

1 V/μs

 

 

THD@1kHz Vout = 0.5V RL=500Ω

-57dB

Closed-Loop Gain=20dB

 

 

 

PSRR+@1kHz

75dB

 

 

PSRR- @1kHz

75dB

 

 

CMRR @1kHz

95dB

 

 

Offset

< 8mv

 

 

Power Dissipation

280μW

 

 

Die Size

0.08 mm2

Technology

1.2μm CMOS

 

 

Loading

50pF || 500Ω

9 - 1

CHUNG-YU WU

Chapter 9 Passive Components and Switches

§9-1 Resistors

1.Source/Drain diffused resistor

Thermal oxide

Metal

n +

p

*Compatible with NMOS and CMOS. metal-gate and Si-gate techniologies.

* R= 20 ~ 100Ω /( 100KΩ max)

*Temperature Coefficient of Resistance (TCR) = 500~1500 ppm/oC.

Voltage Coefficient of Resistance (VCR)=100~500ppm/ oC Tolerance= ± 20% (Absolute)

*High parasitic capacitance (n+-p junction cap.) Piezoresistance error. (Because of shallow junction)

2.P-well (N-well) diffused resistor (Well or tub resistor)

Thermal oxide

Metal

p +

n +

p +

 

p

 

n

*Compatible with CMOS metal-gate or Si-gate technology.

*R= 1KΩ ~ 5KΩ /Large VCR

9 - 2

Tolarance= ± 40% (absolute)

*Large depth and lateral

spreading Þnarrow resistors are impossible.

3.Implanted resistor

CHUNG-YU WU

( metal-gate technology )

SiO2

CVD SiO2

 

n+

n+

Implanted N+

p-sub

*Compatible with NMOS and CMOS, metal-gate and Si-gate technologies.

*Need an additional masking step.

* R> 500Ω ~ 1000Ω /; can be accurately controlled.

*Higher VCR ; smaller tolerance.

*Difficult to eliminate the piezoresistance effect.

*The resistor implant can be combined with the depletion implant.

4.Poly-Si resistor

 

 

 

Vapor-deposited oxide

 

 

Metal

Poly Si I or II

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P

 

Field oxide

* Realizable by NMOS and CMOS Si-gate technologies.

*

R = 30Ω ~ 200Ω / (doped with the source/drain

 

diffusion)

*

TCR 500~1500 ppm/oC ; Tolerance= ± 40%

*Can be trimmed by laser or poly fuse.

*Fully isolated with smaller parasitic capacitance.

²Version I :Poly-I resistor

²Version II:Poly-II resistor

9 - 3

CHUNG-YU WU

²²Version III :Poly-I and Poly-II distributed RC structure (please see the structure shown in poly to poly

capacitor)

5.Switched-capacitor simulated resistor

*Realizable by NMOS and CMOS , metal-gate and Sigate technologies.

*High frequency operation?

 

 

φ

φ

 

i

 

 

V1

V2

V1

V2

 

R

 

C

i =

V1 V2

f C is the clock frequency of φ or

 

φ

R

 

 

 

 

 

 

 

 

 

 

 

 

i =

C (V1 -V2 )

,

R =

T

=

1

 

 

 

 

T

C

f C ×C

 

 

 

 

 

 

6.Thin-film resistor

*Realizable by NMOS and CMOS, metal-gate and Si-gate technologies.

*Need additional process steps.

*Si-Chromium resistor or Mo resistor.

*Laser trimming is possible.

*Non-conventional material may be involved.

§9-2 Capacitors

1.PN junction capacitor

*Well known and understood.

*Nonlinear capacitance with a large VCR.

Соседние файлы в папке different