
- •Verilog-AMS
- •Language Reference Manual
- •Table of Contents
- •1. Verilog-AMS introduction
- •1.1 Overview
- •1.2 Mixed-signal language features
- •1.3 Systems
- •1.3.1 Conservative systems
- •1.3.1.1 Reference nodes
- •1.3.1.2 Reference directions
- •1.3.2 Kirchhoff’s Laws
- •1.3.3 Natures, disciplines, and nets
- •1.3.4 Signal-flow systems
- •1.3.5 Mixed conservative/signal flow systems
- •1.4 Conventions used in this document
- •1.5 Contents
- •2. Lexical conventions
- •2.1 Overview
- •2.2 Lexical tokens
- •2.3 White space
- •2.4 Comments
- •2.5 Operators
- •2.6 Numbers
- •2.6.1 Integer constants
- •2.6.2 Real constants
- •2.7 String literals
- •2.8 Identifiers, keywords, and system names
- •2.8.1 Escaped identifiers
- •2.8.2 Keywords
- •2.8.3 System tasks and functions
- •2.8.4 Compiler directives
- •2.9 Attributes
- •2.9.1 Standard attributes
- •2.9.2 Syntax
- •3. Data types
- •3.1 Overview
- •3.2 Integer and real data types
- •3.2.1 Output variables
- •3.3 String data type
- •3.4 Parameters
- •3.4.1 Type specification
- •3.4.2 Value range specification
- •3.4.3 Parameter units and descriptions
- •3.4.4 Parameter arrays
- •3.4.5 Local parameters
- •3.4.6 String parameters
- •3.4.7 Parameter aliases
- •3.5 Genvars
- •3.6 Net_discipline
- •3.6.1 Natures
- •3.6.1.1 Derived natures
- •3.6.1.2 Attributes
- •3.6.1.3 User-defined attributes
- •3.6.2 Disciplines
- •3.6.2.1 Nature binding
- •3.6.2.2 Domain binding
- •3.6.2.3 Empty disciplines
- •3.6.2.4 Discipline of nets and undeclared nets
- •3.6.2.5 Overriding nature attributes from discipline
- •3.6.2.6 Deriving natures from disciplines
- •3.6.2.7 User-defined attributes
- •3.6.3 Net discipline declaration
- •3.6.3.1 Net descriptions
- •3.6.3.2 Net Discipline Initial (Nodeset) Values
- •3.6.4 Ground declaration
- •3.6.5 Implicit nets
- •3.7 Real net declarations
- •3.8 Default discipline
- •3.9 Disciplines of primitives
- •3.10 Discipline precedence
- •3.11 Net compatibility
- •3.11.1 Discipline and Nature Compatibility
- •3.12 Branches
- •3.13 Namespace
- •3.13.1 Nature and discipline
- •3.13.2 Access functions
- •3.13.4 Branch
- •4. Expressions
- •4.1 Overview
- •4.2 Operators
- •4.2.1 Operators with real operands
- •4.2.1.1 Real to integer conversion
- •4.2.1.2 Integer to real conversion
- •4.2.1.3 Arithmetic conversion
- •4.2.2 Operator precedence
- •4.2.3 Expression evaluation order
- •4.2.4 Arithmetic operators
- •4.2.5 Relational operators
- •4.2.6 Case equality operators
- •4.2.7 Logical equality operators
- •4.2.8 Logical operators
- •4.2.9 Bitwise operators
- •4.2.10 Reduction operators
- •4.2.11 Shift operators
- •4.2.12 Conditional operator
- •4.2.13 Concatenations
- •4.3 Built-in mathematical functions
- •4.3.1 Standard mathematical functions
- •4.3.2 Transcendental functions
- •4.4 Signal access functions
- •4.5 Analog operators
- •4.5.1 Vector or array arguments to analog operators
- •4.5.2 Analog operators and equations
- •4.5.3 Time derivative operator
- •4.5.4 Time integral operator
- •4.5.5 Circular integrator operator
- •4.5.6 Derivative operator
- •4.5.7 Absolute delay operator
- •4.5.8 Transition filter
- •4.5.9 Slew filter
- •4.5.10 last_crossing function
- •4.5.11 Laplace transform filters
- •4.5.11.1 laplace_zp
- •4.5.11.2 laplace_zd
- •4.5.11.3 laplace_np
- •4.5.11.4 laplace_nd
- •4.5.11.5 Examples
- •4.5.12 Z-transform filters
- •4.5.13 Limited exponential
- •4.5.14 Constant versus dynamic arguments
- •4.5.15 Restrictions on analog operators
- •4.6 Analysis dependent functions
- •4.6.1 Analysis
- •4.6.2 DC analysis
- •4.6.3 AC stimulus
- •4.6.4 Noise
- •4.6.4.1 white_noise
- •4.6.4.2 flicker_noise
- •4.6.4.3 noise_table
- •4.6.4.4 Noise model for diode
- •4.6.4.5 Correlated noise
- •4.7 User defined functions
- •4.7.1 Defining an analog user defined function
- •4.7.2 Returning a value from an analog user defined function
- •4.7.2.1 Analog user defined function identifier variable
- •4.7.2.2 Output arguments
- •4.7.2.3 Inout arguments
- •4.7.3 Calling an analog user defined function
- •5. Analog behavior
- •5.1 Overview
- •5.2 Analog procedural block
- •5.2.1 Analog initial block
- •5.3 Block statements
- •5.3.1 Sequential blocks
- •5.3.2 Block names
- •5.4 Analog signals
- •5.4.1 Access functions
- •5.4.2 Probes and sources
- •5.4.2.1 Probes
- •5.4.2.2 Sources
- •5.4.3 Port branches
- •5.4.4 Unassigned sources
- •5.5 Accessing net and branch signals and attributes
- •5.5.1 Accessing net and branch signals
- •5.5.2 Signal access for vector branches
- •5.5.3 Accessing attributes
- •5.6 Contribution statements
- •5.6.1 Direct branch contribution statements
- •5.6.1.1 Relations
- •5.6.1.2 Evaluation
- •5.6.1.3 Value retention
- •5.6.2 Examples
- •5.6.2.1 The four controlled sources
- •5.6.3 Resistor and conductor
- •5.6.4 RLC circuits
- •5.6.5 Switch branches
- •5.6.6 Implicit Contributions
- •5.6.7 Indirect branch contribution statements
- •5.6.7.1 Multiple indirect contributions
- •5.6.7.2 Indirect and direct contribution
- •5.7 Analog procedural assignments
- •5.8 Analog conditional statements
- •5.8.1 if-else-if statement
- •5.8.2 Examples
- •5.8.3 Case statement
- •5.8.4 Restrictions on conditional statements
- •5.9 Looping statements
- •5.9.1 Repeat and while statements
- •5.9.2 For statements
- •5.9.3 Analog For Statements
- •5.10 Analog event control statements
- •5.10.1 Event OR operator
- •5.10.2 Global events
- •5.10.3 Monitored events
- •5.10.3.1 cross function
- •5.10.3.2 above function
- •5.10.3.3 timer function
- •5.10.4 Named events
- •5.10.5 Digital events in analog behavior
- •6. Hierarchical structures
- •6.1 Overview
- •6.2 Modules
- •6.2.1 Top-level modules
- •6.2.2 Module instantiation
- •6.3 Overriding module parameter values
- •6.3.1 Defparam statement
- •6.3.2 Module instance parameter value assignment by order
- •6.3.3 Module instance parameter value assignment by name
- •6.3.4 Parameter dependence
- •6.3.5 Detecting parameter overrides
- •6.3.6 Hierarchical system parameters
- •6.4 Paramsets
- •6.4.1 Paramset statements
- •6.4.2 Paramset overloading
- •6.4.3 Paramset output variables
- •6.5 Ports
- •6.5.1 Port definition
- •6.5.2 Port declarations
- •6.5.2.1 Port type
- •6.5.2.2 Port direction
- •6.5.3 Real valued ports
- •6.5.4 Connecting module ports by ordered list
- •6.5.5 Connecting module ports by name
- •6.5.6 Detecting port connections
- •6.5.7 Port connection rules
- •6.5.7.1 Matching size rule
- •6.5.7.2 Resolving discipline of undeclared interconnect signal
- •6.5.8 Inheriting port natures
- •6.6 Generate constructs
- •6.6.1 Loop generate constructs
- •6.6.2 Conditional generate constructs
- •6.6.2.1 Dynamic parameters
- •6.6.3 External names for unnamed generate blocks
- •6.7 Hierarchical names
- •6.7.1 Usage of hierarchical references
- •6.8 Scope rules
- •6.9 Elaboration
- •6.9.1 Concatenation of analog blocks
- •6.9.2 Elaboration and paramsets
- •6.9.3 Elaboration and connectmodules
- •6.9.4 Order of elaboration
- •7. Mixed signal
- •7.1 Overview
- •7.2 Fundamentals
- •7.2.1 Domains
- •7.2.2 Contexts
- •7.2.3 Nets, nodes, ports, and signals
- •7.2.4 Mixed-signal and net disciplines
- •7.3 Behavioral interaction
- •7.3.1 Accessing discrete nets and variables from a continuous context
- •7.3.2 Accessing X and Z bits of a discrete net in a continuous context
- •7.3.2.1 Special floating point values
- •7.3.3 Accessing continuous nets and variables from a discrete context
- •7.3.4 Detecting discrete events in a continuous context
- •7.3.5 Detecting continuous events in a discrete context
- •7.3.6 Concurrency
- •7.3.6.1 Analog event appearing in a digital event control
- •7.3.6.2 Digital event appearing in an analog event control
- •7.3.6.3 Analog primary appearing in a digital expression
- •7.3.6.4 Analog variables appearing in continuous assigns
- •7.3.6.5 Digital primary appearing in an analog expression
- •7.3.7 Function calls
- •7.4 Discipline resolution
- •7.4.1 Compatible discipline resolution
- •7.4.2 Connection of discrete-time disciplines
- •7.4.3 Connection of continuous-time disciplines
- •7.4.4 Resolution of mixed signals
- •7.4.4.1 Basic discipline resolution algorithm
- •7.4.4.2 Detail discipline resolution algorithm
- •7.4.4.3 Coercing discipline resolution
- •7.5 Connect modules
- •7.6 Connect module descriptions
- •7.7 Connect specification statements
- •7.7.1 Connect module auto-insertion statement
- •7.7.2 Discipline resolution connect statement
- •7.7.2.1 Connect Rule Resolution Mechanism
- •7.7.3 Parameter passing attribute
- •7.7.4 connect_mode
- •7.8 Automatic insertion of connect modules
- •7.8.1 Connect module selection
- •7.8.2 Signal segmentation
- •7.8.3 connect_mode parameter
- •7.8.3.1 merged
- •7.8.3.2 split
- •7.8.4 Rules for driver-receiver segregation and connect module selection and insertion
- •7.8.5 Instance names for auto-inserted instances
- •7.8.5.1 Port names for Verilog built-in primitives
- •8. Scheduling semantics
- •8.1 Overview
- •8.2 Analog simulation cycle
- •8.2.1 Nodal analysis
- •8.2.2 Transient analysis
- •8.2.3 Convergence
- •8.3 Mixed-signal simulation cycle
- •8.3.1 Circuit initialization
- •8.3.2 Mixed-signal DC analysis
- •8.3.3 Mixed-signal transient analysis
- •8.3.3.1 Concurrency
- •8.3.3.2 Analog macro process scheduling semantics
- •8.3.3.3 A/D boundary timing
- •8.3.4 The synchronization loop
- •8.3.5 Synchronization and communication algorithm
- •8.3.6 Assumptions about the analog and digital algorithms
- •8.4 Scheduling semantics for the digital engine
- •8.4.1 The stratified event queue
- •8.4.2 The Verilog-AMS digital engine reference model
- •8.4.3 Scheduling implication of assignments
- •8.4.3.1 Continuous assignment
- •8.4.3.2 Procedural continuous assignment
- •8.4.3.3 Blocking assignment
- •8.4.3.4 Non blocking assignment
- •8.4.3.5 Switch (transistor) processing
- •8.4.3.6 Processing explicit D2A events (region 1b)
- •8.4.3.7 Processing analog macro-process events (region 3b)
- •9. System tasks and functions
- •9.1 Overview
- •9.2 Categories of system tasks and functions
- •9.3 System tasks/functions executing in the context of the Analog Simulation Cycle
- •9.4 Display system tasks
- •9.4.1 Behavior of the display tasks in the analog context
- •9.4.2 Escape sequences for special characters
- •9.4.3 Format specifications
- •9.4.4 Hierarchical name format
- •9.4.5 String format
- •9.4.6 Behavior of the display tasks in the analog block during iterative solving
- •9.4.7 Extensions to the display tasks in the digital context
- •9.5.1 Opening and closing files
- •9.5.1.1 opening and closing files during multiple analyses
- •9.5.1.2 Sharing of file descriptors between the analog and digital contexts
- •9.5.2 File output system tasks
- •9.5.3 Formatting data to a string
- •9.5.4 Reading data from a file
- •9.5.4.1 Reading a line at a time
- •9.5.4.2 Reading formatted data
- •9.5.5 File positioning
- •9.5.6 Flushing output
- •9.5.7 I/O error status
- •9.5.8 Detecting EOF
- •9.5.9 Behavior of the file I/O tasks in the analog block during iterative solving
- •9.6 Timescale system tasks
- •9.7 Simulation control system tasks
- •9.7.1 $finish
- •9.7.2 $stop
- •9.7.3 $fatal, $error, $warning, and $info
- •9.8 PLA modeling system tasks
- •9.9 Stochastic analysis system tasks
- •9.10 Simulator time system functions
- •9.11 Conversion system functions
- •9.12 Command line input
- •9.13 Probabilistic distribution system functions
- •9.13.1 $random and $arandom
- •9.13.2 distribution functions
- •9.13.3 Algorithm for probablistic distribution
- •9.14 Math system functions
- •9.15 Analog kernel parameter system functions
- •9.16 Dynamic simulation probe function
- •9.17 Analog kernel control system tasks and functions
- •9.17.1 $discontinuity
- •9.17.2 $bound_step task
- •9.17.3 $limit
- •9.18 Hierarchical parameter system functions
- •9.19 Explicit binding detection system functions
- •9.20 Table based interpolation and lookup system function
- •9.20.1 Table data source
- •9.20.2 Control string
- •9.20.3 Example control strings
- •9.20.4 Lookup algorithm
- •9.20.5 Interpolation algorithms
- •9.20.6 Example
- •9.21 Connectmodule driver access system functions and operator
- •9.21.1 $driver_count
- •9.21.2 $driver_state
- •9.21.3 $driver_strength
- •9.21.4 driver_update
- •9.21.5 Receiver net resolution
- •9.21.6 Connect module example using driver access functions
- •9.22 Supplementary connectmodule driver access system functions
- •9.22.1 $driver_delay
- •9.22.2 $driver_next_state
- •9.22.3 $driver_next_strength
- •9.22.4 $driver_type
- •10. Compiler directives
- •10.1 Overview
- •10.2 `default_discipline
- •10.3 `default_transition
- •10.4 `define and `undef
- •10.5 Predefined macros
- •10.6 `begin_keywords and `end_keywords
- •11. Using VPI routines
- •11.1 Overview
- •11.2 The VPI interface
- •11.2.1 VPI callbacks
- •11.2.2 VPI access to Verilog-AMS HDL objects and simulation objects
- •11.2.3 Error handling
- •11.3 VPI object classifications
- •11.3.1 Accessing object relationships and properties
- •11.3.2 Delays and values
- •11.4 List of VPI routines by functional category
- •11.5 Key to object model diagrams
- •11.5.1 Diagram key for objects and classes
- •11.5.2 Diagram key for accessing properties
- •11.5.3 Diagram key for traversing relationships
- •11.6 Object data model diagrams
- •11.6.1 Module
- •11.6.2 Nature, discipline
- •11.6.3 Scope, task, function, IO declaration
- •11.6.4 Ports
- •11.6.5 Nodes
- •11.6.6 Branches
- •11.6.7 Quantities
- •11.6.8 Nets
- •11.6.9 Regs
- •11.6.10 Variables, named event
- •11.6.11 Memory
- •11.6.12 Parameter, specparam
- •11.6.13 Primitive, prim term
- •11.6.15 Module path, timing check, intermodule path
- •11.6.16 Task and function call
- •11.6.17 Continuous assignment
- •11.6.18 Simple expressions
- •11.6.19 Expressions
- •11.6.20 Contribs
- •11.6.21 Process, block, statement, event statement
- •11.6.22 Assignment, delay control, event control, repeat control
- •11.6.23 If, if-else, case
- •11.6.24 Assign statement, deassign, force, release, disable
- •11.6.25 Callback, time queue
- •12. VPI routine definitions
- •12.1 Overview
- •12.2 vpi_chk_error()
- •12.3 vpi_compare_objects()
- •12.4 vpi_free_object()
- •12.6 vpi_get_cb_info()
- •12.7 vpi_get_analog_delta()
- •12.8 vpi_get_analog_freq()
- •12.9 vpi_get_analog_time()
- •12.10 vpi_get_analog_value()
- •12.11 vpi_get_delays()
- •12.13 vpi_get_analog_systf_info()
- •12.14 vpi_get_systf_info()
- •12.15 vpi_get_time()
- •12.16 vpi_get_value()
- •12.17 vpi_get_vlog_info()
- •12.18 vpi_get_real()
- •12.19 vpi_handle()
- •12.20 vpi_handle_by_index()
- •12.21 vpi_handle_by_name()
- •12.22 vpi_handle_multi()
- •12.22.1 Derivatives for analog system task/functions
- •12.22.2 Examples
- •12.23 vpi_iterate()
- •12.24 vpi_mcd_close()
- •12.25 vpi_mcd_name()
- •12.26 vpi_mcd_open()
- •12.27 vpi_mcd_printf()
- •12.28 vpi_printf()
- •12.29 vpi_put_delays()
- •12.30 vpi_put_value()
- •12.31 vpi_register_cb()
- •12.31.1 Simulation-event-related callbacks
- •12.31.2 Simulation-time-related callbacks
- •12.31.3 Simulator analog and related callbacks
- •12.31.4 Simulator action and feature related callbacks
- •12.32 vpi_register_analog_systf()
- •12.32.1 System task and function callbacks
- •12.32.2 Declaring derivatives for analog system task/functions
- •12.32.3 Examples
- •12.33 vpi_register_systf()
- •12.33.1 System task and function callbacks
- •12.33.2 Initializing VPI system task/function callbacks
- •12.34 vpi_remove_cb()
- •12.35 vpi_scan()
- •12.36 vpi_sim_control()
- •A.1 Source text
- •A.1.1 Library source text
- •A.1.2 Verilog source text
- •A.1.3 Module parameters and ports
- •A.1.4 Module items
- •A.1.5 Configuration source text
- •A.1.6 Nature Declaration
- •A.1.7 Discipline Declaration
- •A.1.8 Connectrules Declaration
- •A.1.9 Paramset Declaration
- •A.2 Declarations
- •A.2.1 Declaration types
- •A.2.1.1 Module parameter declarations
- •A.2.1.2 Port declarations
- •A.2.1.3 Type declarations
- •A.2.2 Declaration data types
- •A.2.2.1 Net and variable types
- •A.2.2.2 Strengths
- •A.2.2.3 Delays
- •A.2.3 Declaration lists
- •A.2.4 Declaration assignments
- •A.2.5 Declaration ranges
- •A.2.6 Function declarations
- •A.2.7 Task declarations
- •A.2.8 Block item declarations
- •A.3 Primitive instances
- •A.3.1 Primitive instantiation and instances
- •A.3.2 Primitive strengths
- •A.3.3 Primitive terminals
- •A.3.4 Primitive gate and switch types
- •A.4 Module instantiation and generate construct
- •A.4.1 Module instantiation
- •A.4.2 Generate construct
- •A.5 UDP declaration and instantiation
- •A.5.1 UDP declaration
- •A.5.2 UDP ports
- •A.5.3 UDP body
- •A.5.4 UDP instantiation
- •A.6 Behavioral statements
- •A.6.1 Continuous assignment statements
- •A.6.2 Procedural blocks and assignments
- •A.6.3 Parallel and sequential blocks
- •A.6.4 Statements
- •A.6.5 Timing control statements
- •A.6.6 Conditional statements
- •A.6.7 Case statements
- •A.6.8 Looping statements
- •A.6.9 Task enable statements
- •A.6.10 Contribution statements
- •A.7 Specify section
- •A.7.1 Specify block declaration
- •A.7.2 Specify path declarations
- •A.7.3 Specify block terminals
- •A.7.4 Specify path delays
- •A.7.5 System timing checks
- •A.7.5.1 System timing check commands
- •A.7.5.2 System timing check command arguments
- •A.7.5.3 System timing check event definitions
- •A.8 Expressions
- •A.8.1 Concatenations
- •A.8.2 Function calls
- •A.8.3 Expressions
- •A.8.4 Primaries
- •A.8.5 Expression left-side values
- •A.8.6 Operators
- •A.8.7 Numbers
- •A.8.8 Strings
- •A.8.9 Analog references
- •A.9 General
- •A.9.1 Attributes
- •A.9.2 Comments
- •A.9.3 Identifiers
- •A.9.4 White space
- •A.10 Details
- •C.1 Verilog-AMS introduction
- •C.1.1 Verilog-A overview
- •C.1.2 Verilog-A language features
- •C.2 Lexical conventions
- •C.3 Data types
- •C.4 Expressions
- •C.5 Analog signals
- •C.6 Analog behavior
- •C.7 Hierarchical structures
- •C.8 Mixed signal
- •C.9 Scheduling semantics
- •C.10 System tasks and functions
- •C.11 Compiler directives
- •C.12 Using VPI routines
- •C.13 VPI routine definitions
- •C.14 Analog language subset
- •C.15 List of keywords
- •C.16 Standard definitions
- •C.17 SPICE compatibility
- •C.18 Changes from previous Verilog-A LRM versions
- •C.19 Obsolete functionality
- •D.1 The disciplines.vams file
- •D.2 The constants.vams file
- •D.3 The driver_access.vams file
- •E.1 Introduction
- •E.1.1 Scope of compatibility
- •E.1.2 Degree of incompatibility
- •E.2 Accessing Spice objects from Verilog-AMS HDL
- •E.2.1 Case sensitivity
- •E.2.2 Examples
- •E.3 Accessing Spice models
- •E.3.1 Accessing Spice subcircuits
- •E.3.1.1 Accessing Spice primitives
- •E.4 Preferred primitive, parameter, and port names
- •E.4.1 Unsupported primitives
- •E.4.2 Discipline of primitives
- •E.4.2.1 Setting the discipline of analog primitives
- •E.4.2.2 Resolving the disciplines of analog primitives
- •E.4.3 Name scoping of SPICE primitives
- •E.4.4 Limiting algorithms
- •E.5 Other issues
- •E.5.1 Multiplicity factor on subcircuits
- •E.5.2 Binning and libraries
- •F.1 Discipline resolution
- •F.2 Resolution of mixed signals
- •F.2.1 Default discipline resolution algorithm
- •F.2.2 Alternate expanded analog discipline resolution algorithm
- •G.1 Changes from previous LRM versions
- •G.2 Obsolete functionality
- •G.2.1 Forever
- •G.2.2 NULL
- •G.2.3 Generate
- •G.2.4 `default_function_type_analog

|
Accellera |
Analog and Mixed-signal Extensions to Verilog HDL |
Version 2.3.1, June 1, 2009 |
Syntax 9-3—Syntax for file output system tasks
Each of the formatted display tasks — $display, $write, $monitor, and $strobe — has a counterpart that writes to specific files as opposed to the standard output. These counterpart tasks — $fdisplay, $fwrite, $fmonitor, $fstrobe, and $fdebug — accept the same type of arguments as the tasks upon which they are based, with one exception: The first argument shall be either a multichannel descriptor or a file descriptor, which indicates where to direct the file output. Multichannel descriptors are described in detail in 9.5.1. A multichannel descriptor is either a variable or the result of an expression that takes the form of a 32-bit unsigned integer value.
The $fstrobe and $fmonitor system tasks work just like their counterparts, $strobe and $monitor, except that they write to files using the file descriptor.
9.5.3 Formatting data to a string
The syntax for the $swrite family of tasks and for $sformat system task is shown in Syntax 9-4.
string_output_task ::=
$swrite ( string_variable , list_of_arguments ) ;
variable-format_string_output_task ::=
$sformat ( string_variable , format_string , list_of_arguments ) ;
Syntax 9-4—Syntax for formatting data tasks
The $swrite family of tasks is based on the $fwrite family of tasks and accepts the same type of arguments as the tasks upon which it is based, with one exception: The first argument to $swrite shall be a string variable to which the resulting string shall be written, instead of a variable specifying the file to which to write the resulting string.
The system task $sformat is similar to the system task $swrite, with one major difference.
Unlike the display and write family of output system tasks, $sformat always interprets its second argument, and only its second argument, as a format string. This format argument can be a static string, such as "data is %d" or can be a string variable whose content is interpreted as the format string. No other arguments are interpreted as format strings. $sformat supports all the format specifiers supported by $display, as documented in Table 9-21.
The remaining arguments to $sformat are processed using any format specifiers in the format_string, until all such format specifiers are used up. If not enough arguments are supplied for the format specifiers or too many are supplied, then the application shall issue a warning and continue execution. The application, if possible, can statically determine a mismatch in format specifiers and number of arguments and issue a compile time error message.
If the format_string is a string variable, it might not be possible to determine its value at compile time.
9.5.4 Reading data from a file
Files opened using file descriptors can be read from only if they were opened with either the r or r+ type values. See 9.5.2 for more information about opening files.
205 |
Copyright © 2009 Accellera Organization, Inc. All rights reserved. |
Accellera |
|
Version 2.3.1, June 1, 2009 |
VERILOG-AMS |
9.5.4.1 Reading a line at a time
For example:
integer code ;
code = $fgets ( str, fd );
reads characters from the file specified by fd into the string variable, str until a newline character is read and transferred to str, or an EOF condition is encountered.
If an error occurs reading from the file, then code is set to zero. Otherwise, the number of characters read is returned in code. Applications can call $ferror to determine the cause of the most recent error (see 9.5.7).
9.5.4.2 Reading formatted data
For example:
integer code ;
code = $fscanf ( fd, format, args ); code = $sscanf ( str, format, args );
$fscanf reads from the files specified by the file descriptor fd.
$sscanf reads from the string variable, str.
Both functions read characters, interpret them according to a format, and store the results. Both expect as arguments a control string, format, and a set of arguments specifying where to place the results. If there are insufficient arguments for the format, the behavior is undefined. If the format is exhausted while arguments remain, the excess arguments are ignored.
If an argument is too small to hold the converted input, then, in general, the least significant bits are transferred. Arguments of any length that is supported by Verilog AMS HDL in the analog context can be used. However, if the destination is a real, then the value +Inf (or -Inf) is transferred. The format is a string expression. The string contains conversion specifications, which direct the conversion of input into the arguments. The control string can contain the following:
a)White space characters (blanks, tabs, newlines, or formfeeds) that, except in one case described below, cause input to be read up to the next nonwhite space character. For $sscanf, null characters shall also be considered white space.
b)An ordinary character (not %) that must match the next character of the input stream.
c)Conversion specifications consisting of the character %, an optional assignment suppression character *, a decimal digit string that specifies an optional numerical maximum field width, and a conversion code.
A conversion specification directs the conversion of the next input field; the result is placed in the variable specified in the corresponding argument unless assignment suppression was indicated by the character *. In this case, no argument shall be supplied.
The suppression of assignment provides a way of describing an input field that is to be skipped. An input field is defined as a string of nonspace characters; it extends to the next inappropriate character or until the maximum field width, if one is specified, is exhausted. For all descriptors except the character c, white space leading an input field is ignored.
Copyright © 2009 Accellera Organization, Inc. |
206 |