- •Билет 1.
- •1. Инкапсуляция, наследование, полиморфизм. Классы, объекты и отношения между ними. Диаграммы логического уровня.
- •2. Симметричные блочные криптоалгоритмы. Сеть Фейстеля.
- •Билет 2
- •1. Объявление и реализация классов на языке Паскаль.
- •2. Интерфейс. Пользовательский интерфейс. Классификация пользовательских интерфейсов.
- •Билет 3.
- •1. Графы. Основные определения. Машинное представление графов в последовательной памяти и связанной памяти.
- •2. Общая схема симметричной криптосистемы. Алгоритм построения цепочек.
- •3. Написать процедуру, которая выполняет вставку компоненты по заданному ключу.
- •Билет 4.
- •1. Нормальный алгоритм Маркова.
- •2. Парадигмы интерфейсов.
- •Билет 5.
- •1. Понятие процесса. Состояние процессов. Алгоритмы планирования процессов.
- •2. Общие сведения об ассиметричных криптоалгоритмах. Понятие электронной цифровой подписи.
- •3. Вычислить факториал числа 8.
- •Билет 6.
- •1. Файловая системаFat.
- •2. Основные компоненты графических пользовательских интерфейсов.
- •3. Если элементы массивыD[1…5] равны соответственно 4, 1, 5, 3, 2, то значение выражениеD[d[3]]-d[d[5]] равно?
- •Билет 7
- •1. Структуры распределенных вычислительных систем(топология, физические и логические элементы сетей эвм)
- •2. Встроенные средства контроля доступа в современных ос.
- •3. Указать к какому классу относится каждый из перечисленныхIPадресов:
- •Билет 8
- •1.Трансляторы, компиляторы и интерпретаторы: определение, общая схема работы. Варианты взаимодействия блоков транслятора.
- •2. Эргономические требования, предъявляемые к дизайну пользовательских интерфейсов.
- •3. Указать к какому классу относится каждый из перечисленныхIPадресов:
- •Билет 9
- •1. Сети Петри. Моделирование процессов на основе сетей Петри.
- •2. Нормализация таблиц при проектировании баз данных. Нормальные формы (1нф, 2нф, 3нф, нфбк).
- •3. Составить программу, которая формирует очередь, добавляя в неё произвольное количество компонент.
- •Билет 10.
- •1. Понятие алгоритма. Интуитивное понятие алгоритма.
- •2. Функции субд.
- •Билет 11.
- •1. Структура данных типа стек. Логическая структура стека. Машинное представление стека и реализация операций.
- •2. Принципы и виды отладки программного средства. Автономная отладка программного средства. Комплексная отладка программного средства.
- •3. Дан массив типаwordразмерностьюn. Найти сумму всех элементов, не превышающих заданногоm, далее вывести на экран.
- •Билет 12.
- •1. Сети Петри. Моделирование процессов на основе сетей Петри.
- •2. Модели объектов проектирования .
- •Билет 13.
- •1. Концепции информационного моделирования. Создание моделей на языкеUml.
- •2. Модели систем управления данными: сетевая, иерархическая, реляционная модель.
- •Билет 14.
- •1. Принципы создания компонент в визуальных средах разработки.
- •2. Жизненный цикл программного обеспечения. Модели жизненного цикла по: каскадная, спиральная. Стадии, фазы работы жизненного цикла.
- •Билет 15.
- •1. Деревья. Основные определения. Логическое представление и изображение деревьев. Бинарные деревья. Машинное представление деревьев в памяти эвм. Алгоритмы прохождения деревьев.
- •2. Реляционная модель данных. Базовые понятия. Отношения и свойства отношений. Составляющие реляционной модели данных.
- •Билет 16.
- •1. Предваренная, скулемовская и клазуальная формы. Логическое следование. Унификация. Алгоритм унификации. Исчисление метода резолюций.
- •2. Структура внешнего описания пс. Качество по. Критерии и примитивы качества.
- •Билет 17.
- •1. Понятия прерывания. Виды прерываний. Механизмы прерываний.
- •2. Стадии и этапы разработки базы данных.
- •3. Дан массив типаwordразмерностьюn. Найти сумму всех элементов не прерывающих заданногоm, далее вывести на экран.
- •Билет 18.
- •1. Понятие о способах коммутации в распределенных вычислительных системах(коммутации каналов, коммутация пакетов).
- •2. Процессы управления разработкой пс. Структура управления разработки пс. Планирование составление расписания по разработке пс. Аттестация пс.
- •3. НаписатьHtmLкод для отображения в браузере таблицы:
- •Билет 19.
- •1. Характеристики транспортного и прикладного уровней стека протоколовTcp/ip.
- •2. Трехуровневая архитектура схем баз данных в субд.
- •3. НаписатьHtmLкод для отображения в браузере таблицы:
- •Билет 20.
- •1. Формальные языки и грамматики. Классификация грамматик по Хомскому.
- •2. Методы разработки структуры пс. Восходящая разработка пс. Нисходящая разработка. Конструктивный подход. Архитектурный подход разработки пс.
- •Билет 21.
- •1. Конечные автоматы, автомат со стековой памятью (магазин).
- •2. Организация шин.
- •Билет 22.
- •1. Сети Петри. Моделирование процессов на основе сетей Петри.
- •2. Организация памяти эвм.
- •Билет 23.
- •1. Понятия прерывания. Виды прерываний. Механизмы прерываний.
- •2. Инструментальные среды разработки и сопровождения программных средств и принципы их классификации. Основные классы инструментальных сред разработки и сопровождения программных средств.
- •Билет 24.
- •1. Динамическое поведение объектов. Состояния, события, сигналы и сообщения. Модели взаимодействия объектов.
- •2. Типы структур вычислительных машин и систем, перспективы и развития.
- •Билет 25
- •1. Структура данных типа стек. Логическая структура стека. Машинное представление стека и реализация операций.
- •2. Основные понятия, определения и назначение сапр
- •3. Составить программу, которая формирует очередь, добавляя в неё произвольное количество компонент.
- •Билет 26.
- •1. Сравнительный анализ алгоритмов поиска: линейный, двоичный.
- •2. Факторы, определяющие развитие архитектуры вычислительных систем.
- •3. Составить программу, которая формирует очередь, добавляя в неё произвольное количество компонент.
- •Билет 27.
- •1. Рекурсивные функции. Лямбда- исчисление Черча.
- •2. Обеспечивающие системы сапр.
- •Билет 28.
- •1. Память. Типы адресов. Виды распределения памяти.
- •2. Архитектура системы команд.
- •3. Найти в массиве максимальный элемент и его индекс. Вывести на печать.
- •Билет 29.
- •1. Аппаратура передачи данных (модемы).
- •2. Проектные процедуры в сапр.
- •Билет 30.
- •1. Характеристика канального и сетевого уровней стека протоколовTcp/ip.
- •2. Стековая архитектура вычислительных машин.
- •Билет 31
- •1. Синтаксический разбор. Классификация методов синтаксического разбора.
- •2. Интеграция систем автоматизации проектирования и управления(cad–cam–capp– системы).
- •Билет 32
- •1. Понятие алгоритма. Интуитивное понятие алгоритма.
- •2. Объекты и отношения в программировании. Сущность объектного подхода к разработке программных средств. Особенности объектного подхода к разработке внешнего описания программного средства.
- •3. Указать к какому классу относится каждый из перечисленныхIPадресов:
- •Билет 33.
- •1. Объявление и реализация классов на языке Паскаль.
- •2. Архитектура клиент-сервер. Распределенные базы данных.
- •Билет 34.
- •1. Характеристики транспортного и прикладного уровней стека протоколовTcp/ip.
- •2. Вычислительные методы решения задач на эвм. Приближения функций. Интерполяция и Метод наименьших квадратов.
- •Билет 35.
- •1. Компоненты и интерфейсы. Диаграммы физического уровня.
- •2. Правовые вопросы организации Интернет-сайта.
- •Билет 36.
- •1. Структуры данных типа очередь. Логическая структура очереди. Машинное представление очередиFifOи реализация операций. Очереди с приоритетами.
- •2. Моделирование как процесс познания. Математическая модель, понятие вычислительного эксперимента и его структура.
- •3. Составить программу, которая формирует стек, добавляя в него произвольное количество компонент.
- •Билет 37
- •1. Улучшенные методы сортировки. Сортировка Шелла, Хоара, улучшенная сортировка выбором. Сортировка с помощью дерева.
- •2. Правовые вопросы, возникающие при использовании электронной почты.
- •3. Составить программу, которая формирует стек, добавляя в него произвольное количество компонент.
- •Билет 38.
- •1. Классификация ос. Требования, предъявляемые к ос.
- •2. Понятие системы. Математическое определение системы. Классификация систем.
- •Билет 39.
- •1. Понятия файла. Структура файла. Реализация файлов
- •2. Виды объектов авторского права. Виды авторских прав. Программы для эвм и базы данных, как объектов авторского права.
- •3. Подсчитать сколько раз в массиве встречается заданный элементN. Вывести количество данных вхождений.
- •Билет 40.
- •1. Характеристики локальных вычислительных сетей типаEthernet.
- •2. Нормальный алгоритм Маркова.
- •3. Написать кодcssфайла в котором при помощи псевдоклассов описывается поведение ссылок отличное от стандартного.
- •Билет 41.
- •1. Взаимодействие узлов с использованием стека протоколовTcp/ip.
- •2. Объекты патентного права.
- •3. Указать к какому классу относится каждый из перечисленныхIPадресов:
- •Билет 42.
- •1. Машина Тьюринга.
- •2. Уровни моделирования. Общая характеристика и особенности. Моделирование на микроуровне. Обобщенная модель и моделирование тепловых систем (краевая задача для уравнения теплопроводности)
- •2) Уравнение теплопроводности
- •Билет 43.
- •1. Архитектура системы команд.
- •2. Уровни моделирования. Моделирование на макроуровне. Типичная общая модель и моделирование электрических систем.
- •Билет 44.
- •1. Структуры данных типа очередь. Логическая структура очереди. Машинное представление очередиFifOи реализация операций. Очереди с приоритетами.
- •2. Принципы построения современных эвм.
- •3. Найти в массиве максимальный элемент и его индекс. Вывести на печать.
- •Билет 45.
- •1. Характеристика канального и сетевого уровней стека протоколовTcp/ip.
- •2. Численное решение задачи Коши для обыкновенных дифференциальных уравнений. Метод Эйлера. Одношаговые и многошаговые методы.
- •3. Указать к какому классу относится каждый из перечисленныхIPадресов:
3. Составить программу, которая формирует стек, добавляя в него произвольное количество компонент.
program Project11;
{$APPTYPE CONSOLE}
uses
SysUtils,
Windows;
//Program Zadanie_11;
//Uses Crt;
Type
TPtr = ^TElem;
TElem = record
Inf :Integer;
Link:TPtr;
end;
Var
Z,Value:Integer;
Top:TPtr;
Procedure Push(Val:Integer);
Var P:TPtr;
Begin
New(P);
P^.Inf:=Val;
P^.Link:=Top;
Top:=P;
End;
Procedure Pop(var Val:Integer);
Var P:TPtr;
Begin
Val:=Top^.Inf;
P:=Top;
Top:=P^.Link;
Dispose(P);
End;
Begin
//ClrScr;
Writeln('Create STACK...');
Top:=nil;
Writeln('Ukagite deistvie:');
Writeln(' 1. Zapis v STACK');
Writeln(' 2. Izvlechenie iz STACK');
Writeln(' 3. Ochistka STACK and print');
Writeln(' 4. EXIT');
Repeat
Readln(Z);
If Z=1 Then Begin
Writeln('Vvedite VALUE == ');
Readln(Value);
Push(Value);
End;
If Z = 2 Then
Begin
Pop(Value);
Writeln('Izvlechennoe VALUE == ',Value);
End;
If Z = 3 Then Begin
While Top <> nil do
Begin
Pop(Value);
Writeln('Izvlechennoe VALUE == ',Value);
End;
End;
Until (Z=4);
End.
//begin
{ TODO -oUser -cConsole Main : Insert code here }
//end.
Билет 38.
1. Классификация ос. Требования, предъявляемые к ос.
Вариантов классификации ОС может быт очень много, они зависят от признака, по которому одна ОС отличается от другой:
- по назначению;
- по режиму обработки;
- по способу взаимодействия с системой;
- по способу построения.
Основным предназначением ОС является:
- организация эффективных и надежных вычислений;
- создание различных интерфейсов для взаимодействия с этими вычислениями и самой вычислительной системой.
ОС разделяют по назначению:
- ОС общего назначения;
- ОС специально назначения.
ОС специального назначения подразделяются на следующие:
- для переносимых компьютеров и встроенных систем;
- для организации и ведения баз данных;
- для решения задач реального времени и т.д.
ОС разделяют по режиму обработки задач:
- однопрограммный режим;
- мультипрограммный режим.
Мультипрограммирование – способ организации вычислений, когда на однопроцессной вычислительной системе создается видимость одновременного выполнения нескольких задач. Любая задержка в выполнении одной программы используется для выполнения других программ.
Мультипрограммный и многозадачный режимы близки по смыслу, но синонимами не являются.
Мультипрограммный режим обеспечивает параллельное выполнение нескольких приложений, а программисты, создающие эти приложения, не должны заботиться о механизме организации их параллельной работы. Эти функции выполняет ОС, которая распределяет между выполняющимися приложениями ресурсы вычислительной системы, обеспечивает необходимую синхронизацию вычислений и взаимодействие.
Мультизадачный режим предполагает, что забота о параллельном выполнении и взаимодействии приложений ложится на прикладных программистов.
Современные ОС для ПК реализуют и мультипрограммный, и многозадачный режимы.
По организации работы в диалоговом режиме ОС делятся на следующие:
- однопользовательские (однотерминальные);
- мультитерминальные.
В мультитерминальных ОС с одной вычислительной системой одновременно могут работать несколько пользователей, каждый со своего терминала, при этом у пользователей возникает иллюзия, что у него имеется своя собственная вычислительная система. Для организации мультитерминального доступа необходим мультипрограммный режим работы вычислительной системы.
Основная особенность операционных систем реального времени (ОСРВ) – обеспечение обработки поступающих заданий в течение заданных интервалов времени, которые нельзя превышать. Поток заданий не является планомерным и не регулируется оператором, т.е. задания поступают в непредсказуемые моменты времени и без всякой очередности. В ОСРВ в общем случае отсутствуют накладные расходы процессорного времени на этап инициирования (загрузку программы, выделение ресурсов), так как набор задач обычно фиксирован и вся информация о задаче известна до поступления запроса. Для реализации режима реального времени необходим режим мультипрограммирования, который является основным средством повышения производительности вычислительной системы, а для задач реального времени производительность – решающий фактор. Лучшие по производительности характеристики для систем реального времени обеспечивают однотерминальные ОСРВ.
По способам построения (архитектуре) ОС подразделяются на следующие:
- микроядерные;
- монолитные.
Это деление условно. К микроядерным ОС относится ОСРВ QNX, а к монолитным – Windows 9x и Linux. Для ОС Windows 9x пользователь не может изменить ядро, так как не располагает исходными кодами и программой сборки ядра. Для ОС Linux такая возможность предоставлена, пользователь может сам собрать ядро, включив в него необходимые программные модули и драйверы.
Очевидно, что главным требованием, предъявляемым к операционной системе, является способность выполнения основных функций: эффективного управления ресурсами и обеспечения удобного интерфейса для пользователя и прикладных программ. Современная ОС, как правило, должна реализовывать мультипрограммную обработку, виртуальную память, свопинг(виртуальная память), поддерживать многооконный интерфейс, а также выполнять многие другие, совершенно необходимые функции. Кроме этих функциональных требований к операционным системам предъявляются не менее важные рыночные требования. К этим требованиям относятся:
Расширяемость. Код должен быть написан таким образом, чтобы можно было легко внести дополнения и изменения, если это потребуется, и не нарушить целостность системы.
Переносимость. Код должен легко переноситься с процессора одного типа на процессор другого типа и с аппаратной платформы (которая включает наряду с типом процессора и способ организации всей аппаратуры компьютера) одного типа на аппаратную платформу другого типа.
Надежность и отказоустойчивость. Система должна быть защищена как от внутренних, так и от внешних ошибок, сбоев и отказов. Ее действия должны быть всегда предсказуемыми, а приложения не должны быть в состоянии наносить вред ОС.
Совместимость. ОС должна иметь средства для выполнения прикладных программ, написанных для других операционных систем. Кроме того, пользовательский интерфейс должен быть совместим с существующими системами и стандартами.
Безопасность. ОС должна обладать средствами защиты ресурсов одних пользователей от других.
Производительность. Система должна обладать настолько хорошим быстродействием и временем реакции, насколько это позволяет аппаратная платформа.
Основные требования к операционной системе реального времени:
1) мультипрограммность и многозадачность (многопоточность). ОС должна активно использовать прерывания для диспетчеризации. Максимальное время выполнения того или иного действия должно быть известно заранее и соответствовать требованиям приложения;
2) приоритеты задач (потоков). Проблема, какой задаче ресурс требуется больше всего. В идеальной ситуации ОСРВ отдает ресурс потоку или драйверу с ближайшим крайнем сроком завершения. Чтобы реализовать этот принцип ОС должна знать, сколько времени требуется каждому процессу для его завершения. Таких ОС нет, так как их очень сложно реализовать, поэтому вводится понятие уровня приоритета для задачи и временные ограничения сводятся к приоритетам;
3) наследование приоритетов. ОСРВ должна допускать наследование приоритета, то есть повышение уровня приоритета потока до уровня приоритета потока, который его вызывает. Наследование означает, что блокирующий ресурс поток наследует приоритет потока, который он блокирует;
4) синхронизация процессов и задач. Так как задачи разделяют данные (ресурсы) и должны сообщаться друг с другом, то должны существовать механизмы блокирования и коммуникации. Эти системные механизмы должны быть всегда доступны процессам, требующим реального времени;
5) предсказуемость. Времена выполнения системных вызовов и временные характеристики поведения системы в различных обстоятельствах должны быть известны разработчику.
Разработчик ОСРВ должен привести следующие характеристики:
- задержку прерывания, время от момента прерывания до момента запуска задачи;
- максимальное время выполнения каждого системного вызова;
- максимальное время маскирования прерываний драйверами и ОС.
