Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ГОСЫ / ГОСБилеты.odt
Скачиваний:
165
Добавлен:
05.06.2015
Размер:
1.54 Mб
Скачать

Билет 16.

1. Предваренная, скулемовская и клазуальная формы. Логическое следование. Унификация. Алгоритм унификации. Исчисление метода резолюций.

Предваренная нормальная форма

Для облегчения анализа сложных суждений формулы алгебры предикатов рекомендуется приводить к нормальной форме. Если в алгебре высказываний приняты две нормальные формы (ДНФ - дизъюнктивная и КНФ -конъюнктивная), то в алгебре предикатов - одна предваренная нормальная форма (ПНФ), суть которой сводится к разделению формулы на две части: кванторную и безкванторную. Для этого все кванторы формулы выносят влево, используя законы и правила алгебры предикатов.

В результате этих алгебраических преобразова­ний может быть получена формула вида: x1x2 xn(M), где {; } , а М – матрица формулы. Кванторную часть формулы x1x2 xn иногда называют префиксом ПНФ.

В последующем матрицу форму­лы преобразуют к виду КНФ, что облегчает механизм по принципу резолюции.

Сколемовская стандартная форма

Наличие разноимен­ных кванторов усложняет вывод заключения. Поэтому рассмотрим класс формул, содержащих только кванторы всеобщности. Фор­мула F называется - формулой, если она представлена в ПНФ и содержит только кванторы всеобщности, т.е.

F = x1x2xn (M).

Для устранения кванторов существования из префикса формулы разработан алгоритм Сколема, вводящий сколемовскую функцию для связывания предметной переменной квантора существования с другими предметными переменными.

Принцип резолюции

Существует эффективный алгоритм логического вывода - алгоритм резолюции. Этот алгоритм основан на том, что выводимость формулы В из множества посылок F1; F2; F3; . . . Fn равносильна доказательству теоремы

(F1F2F3. . .FnB),

формулу которой можно преобразовать так:

(F1F2F3. . .FnB) =

((F1F2F3. . .Fn)B) =

(F1F2F3. . .Fn( F2 B)).

Следовательно, заключение В истинно тогда и только тогда, когда формула (F1F2F3...Fn(B))=л. Это возможно при значении “л” хотя бы одной из подформул Fi илиB.

Для анализа этой формулы все подформулы Fi иB должны быть приведены в конъюнктивную нормальную форму и сформировано множество дизъюнктов, на которые распадаются все подформулы. Два дизъюнкта этого множества, содержащие пропозициональные переменные с противоположными знаками (контрарные атомы) формируют третий дизъюнкт - резольвенту, в которой будут исключены контрарные пропозициональные переменные. Неоднократно применяя это правило к множеству дизъюнктов и резольвент, стремятся получить пустой дизъюнкт. Наличие пустого дизъюнкта свидетельствует о выполнении условия F1F2F3...FnB=л.

Нормальные формы формул

В алгебре высказываний используют две нормальные фор­мы: дизъюнктивную и конъюнктивную нормальные формы формулы (ДНФ и КНФ).

ДНФ формулы есть формула, равносильная формуле исходной логической функции и записанная в виде дизъюнкции элементарных конъюнкций, построенных на пропозициональных переменных, т.е.

F = K1 K2 K3 . . ., где Ki = ( ABC . . .).

В элементарной коньюнкции нет двух одинаковых пропозициональных переменных, т.к. по закону идемпотентности FF=F. В ДНФ нет двух одинаковых элементарных коньюнкций, т.к. по закону идемпотентности FF=F. Если одна из элементарных коньюнкций содержит F и F, то элементарную коньюнкцию следует удалить, т.к. FF=л.

КНФ формулы есть формула, равносильная формуле исходной логической функции и записанная в виде конъюнкции элементарных дизъюнкций, построенных на пропозициональных переменных, т.е.

F = D1 D2 D3 . . . , где Di = ( ABC . . . ).

В элементарной дизьюнкции нет двух одинаковых пропозициональных переменных, т.к. по закону идемпотентности FF=F. В КНФ нет двух одинаковых элементарных дизьюнкций, т.к. по закону идемпотентности FF=F. Если одна из элементарных дизьюнкций содержит F и F, то следует удалить, т.к. FF = и.

Соседние файлы в папке ГОСЫ