 
        
        Пособие по математической статистике
.pdf| 35 96 31 53 07 | 26 89 80 93 54 | 33 35 13 54 62 | 77 97 45 00 24 | 90 10 33 93 33 | 
| 59 80 80 83 91 | 45 42 72 68 42 | 83 60 94 97 00 | 13 02 12 48 92 | 78 56 52 01 06 | 
| 46 05 88 52 36 | 01 39 09 22 86 | 77 28 14 40 77 | 93 91 08 36 47 | 70 61 74 29 41 | 
| 32 17 90 05 97 | 87 37 92 52 41 | 05 56 70 70 07 | 86 74 31 71 57 | 85 39 41 18 38 | 
| 69 23 46 14 06 | 20 11 74 52 04 | 15 95 66 00 00 | 18 74 39 24 23 | 97 11 89 63 35 | 
| 19 56 54 14 30 | 01 75 87 53 79 | 40 41 92 15 85 | 66 67 43 68 06 | 84 96 28 52 07 | 
| 45 15 51 49 38 | 19 47 60 72 46 | 43 66 79 45 43 | 59 04 79 00 33 | 20 82 66 95 41 | 
| 94 86 43 19 94 | 36 16 81 08 51 | 34 88 88 15 53 | 01 54 03 54 56 | 05 01 45 11 76 | 
| 98 08 62 48 26 | 45 24 02 84 04 | 44 99 90 88 96 | 39 09 47 34 07 | 35 44 13 18 80 | 
| 33 18 51 62 32 | 41 94 15 09 49 | 89 43 54 85 81 | 88 69 54 19 94 | 37 54 87 30 43 | 
| 80 95 10 04 06 | 96 38 27 07 74 | 20 15 12 33 87 | 25 01 62 52 98 | 94 62 46 11 71 | 
| 79 75 24 91 40 | 71 96 12 82 96 | 69 86 10 25 91 | 74 85 22 05 39 | 00 38 75 95 79 | 
| 18 63 33 25 37 | 98 14 50 65 71 | 31 01 02 46 74 | 05 45 56 14 27 | 77 93 89 19 36 | 
| 74 02 94 39 02 | 77 55 73 22 70 | 97 79 01 71 19 | 52 52 75 80 21 | 80 81 45 17 48 | |
| 54 17 84 58 11 | 80 99 33 71 43 | 05 33 51 29 69 | 56 12 71 92 55 | 36 04 09 03 24 | |
| 11 66 44 98 83 | 52 07 98 48 27 | 59 38 17 15 39 | 09 97 33 34 40 | 88 46 12 33 56 | |
| 48 32 47 79 28 | 31 24 66 47 10 | 02 29 53 68 70 | 32 30 75 75 46 | 25 02 00 99 94 | |
| 69 07 49 41 38 | 87 63 79 19 76 | 35 58 40 44 01 | 10 51 82 16 15 | 01 84 87 69 38 | |
Стр. 181
 
Таблица 2. Значения нормированной функции Лапласа
| 
 | 
 | 
 | 
 | 
 | 
 | 1 | 
 | х | t 2 | 
 | 
 | 
 | 
 | |
| 
 | 
 | 
 | 
 | Ф0 (х) | 
 | е 2 dt | 
 | 
 | 
 | 
 | ||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||
| 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | |||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 0 | 
 | 
 | 
 | 
 | 
 | ||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
| X | 0 | 1 | 2 | 3 | 
 | 4 | 
 | 
 | 
 | 5 | 6 | 7 | 8 | 9 | 
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |
| 0.0 | 0.00000 | 00399 | 00798 | 01197 | 01595 | 
 | 
 | 01994 | 02392 | 02790 | 03188 | 03586 | ||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |
| 0.1 | 03983 | 04380 | 04776 | 05172 | 05567 | 
 | 
 | 05962 | 06356 | 06749 | 07142 | 07535 | ||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |
| 0.2 | 07926 | 08317 | 08706 | 09095 | 09483 | 
 | 
 | 09871 | 10257 | 10642 | 11026 | 11409 | ||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |
| 0.3 | 11791 | 12172 | 12552 | 12930 | 13307 | 
 | 
 | 13683 | 14058 | 14431 | 14803 | 15173 | ||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |
| 0.4 | 15542 | 15910 | 16276 | 16640 | 17003 | 
 | 
 | 17364 | 17724 | 18082 | 18439 | 18793 | ||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |
| 0.5 | 19146 | 19497 | 19847 | 20194 | 20540 | 
 | 
 | 20884 | 21226 | 21566 | 21904 | 22240 | ||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |
| 0.6 | 22575 | 22907 | 23237 | 23565 | 23891 | 
 | 
 | 24215 | 24537 | 24857 | 25175 | 25490 | ||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |
| 0.7 | 25804 | 26115 | 26424 | 26730 | 27035 | 
 | 
 | 27337 | 27637 | 27935 | 28230 | 28524 | ||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |
| 0.8 | 28814 | 29103 | 29389 | 29673 | 29955 | 
 | 
 | 30234 | 30511 | 30785 | 31057 | 31327 | ||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |
| 0.9 | 31594 | 31859 | 32121 | 32381 | 32639 | 
 | 
 | 32894 | 33147 | 33398 | 33646 | 33891 | ||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |
| 1.0 | 34134 | 34375 | 34614 | 34849 | 35083 | 
 | 
 | 35314 | 35543 | 35769 | 35993 | 36214 | ||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |
| 1.1 | 36433 | 36650 | 36864 | 37076 | 37286 | 
 | 
 | 37493 | 37698 | 37900 | 38100 | 38298 | ||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |
| 1.2 | 38493 | 38686 | 38877 | 39065 | 39251 | 
 | 
 | 39435 | 39617 | 39796 | 39973 | 40147 | ||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |
| 1.3 | 40320 | 40490 | 40658 | 40824 | 40988 | 
 | 
 | 41149 | 41308 | 41466 | 41621 | 41774 | ||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |
| 1.4 | 41924 | 42073 | 42220 | 42364 | 42507 | 
 | 
 | 42647 | 42785 | 42922 | 43056 | 43189 | ||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |
| 1.5 | 43319 | 43448 | 43574 | 43699 | 43822 | 
 | 
 | 43943 | 44062 | 44179 | 44295 | 44408 | ||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |
| 1.6 | 44520 | 44630 | 44738 | 44845 | 44950 | 
 | 
 | 45053 | 45154 | 45254 | 45352 | 45449 | ||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |
| 1.7 | 45543 | 45637 | 45728 | 45818 | 45907 | 
 | 
 | 45994 | 46080 | 46164 | 46246 | 46327 | ||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |
| 1.8 | 46407 | 46485 | 46562 | 46638 | 46712 | 
 | 
 | 46784 | 46856 | 46926 | 46995 | 47062 | ||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |
| 1.9 | 47128 | 47193 | 47257 | 47320 | 47381 | 
 | 
 | 47441 | 47500 | 47558 | 47615 | 47670 | ||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
Стр. 182
 
| 2.0 | 47725 | 47778 | 
 | 47831 | 
 | 47882 | 
 | 47932 | 47982 | 
 | 48030 | 48077 | 48124 | 48169 | ||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
| 2.1 | 48214 | 48257 | 
 | 48300 | 
 | 48341 | 
 | 48382 | 48422 | 
 | 48461 | 48500 | 48537 | 48574 | ||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
| 2.2 | 48610 | 48645 | 
 | 48679 | 
 | 48713 | 
 | 48745 | 48778 | 
 | 48809 | 48840 | 48870 | 48899 | ||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
| 2.3 | 48928 | 48956 | 
 | 48983 | 
 | 49010 | 
 | 49036 | 49061 | 
 | 49086 | 49111 | 49134 | 49158 | ||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
| 2.4 | 49180 | 49202 | 
 | 49224 | 
 | 49245 | 
 | 49266 | 49286 | 
 | 49305 | 49324 | 49343 | 49361 | ||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
| 2.5 | 49379 | 49396 | 
 | 49413 | 
 | 49430 | 
 | 49446 | 49461 | 
 | 49477 | 49492 | 49506 | 49520 | ||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
| 2.6 | 49534 | 49547 | 
 | 49560 | 
 | 49573 | 
 | 49585 | 49598 | 
 | 49609 | 49621 | 49632 | 49643 | ||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
| 2.7 | 49653 | 49664 | 
 | 49674 | 
 | 49683 | 
 | 49693 | 49702 | 
 | 49711 | 49720 | 49728 | 49736 | ||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
| 2.8 | 49744 | 49752 | 
 | 49760 | 
 | 49767 | 
 | 49774 | 49781 | 
 | 49788 | 49795 | 49801 | 49807 | ||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
| 2.9 | 49813 | 49819 | 
 | 49825 | 
 | 49831 | 
 | 49836 | 49841 | 
 | 49846 | 49851 | 49856 | 49861 | ||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||
| 
 | 
 | 
 | x | 
 | 
 | 3.0 | 
 | 3.5 | 4.0 | 
 | 
 | 
 | 5.0 | 
 | 
 | |||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||
| 
 | 
 | 
 | Ф0 (х) | 
 | 0.49865 | 
 | 0.49977 | 0.499968 | 
 | 0.49999997 | 
 | 
 | ||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
Квантили распределения Up нормального распределения N(0;1)
| P | 0,90 | 0,95 | 0,975 | 0,99 | 0,995 | 0,999 | 0,9995 | |
| Up | 1,282 | 1,645 | 1,966 | 2,326 | 
 | 2,576 | 3,096 | 3,291 | 
Замечание о нахождении квантилей порядка «р» с использованием таблицы Лапласа.
Пусть нужно найти квантиль порядка «р»нормального стандартного распределения.
F(xp)=0,5+Ф(хр)=р ↔ хр= (р-0,5)
(р-0,5)
Например, нужно найти квантиль порядка 0,8. Вычислим р-0,5=0,8-0,5=0,3.
(0,3)≈0,85 (смотрите значение в таблице Лапласа)
Случайная величина χ распределена нормально с параметрами m, σ, если
функция плотности задается формулой
( )
f(x)= √ *
183
 
Если m=0, σ=1, то имеем стандартизированную случайную величину.
Функция плотности: (x)=√
[есть таблица значений этой функции]
| 1 | F(x) | 
| 
 | 
| Функция распределения | 
 | 
 | 
 | ||||||
| 1/2 | 
 | 
 | |||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |
| 
 | ( | m) | 
 | 
 | 
 | 
 | |||
| 
 | 
 | 
 | |||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |
| F(x)=∫ √ | 
 | 
 | 
 | 
 | m | X | |||
| 
 | 
 | 
 | 
 | 
 | 
 | ||||
Чтобы найти значения функции распределения используют таблицу значений
функции Лапласа
Ф(x)=∫ √
Ф(-x)=- Ф(x)
Ф(х)=1/2
F(x)=0,5+Ф((x-m)/σ)
Основные формулы для вычисления вероятностей попадания в интервалы
1.Р{χ<α}=0,5+Ф((α-m)/σ)
2.P{χ>β}=0,5- Ф((β-m)/σ)
3.P{α<χ<β}=Ф((β-m)/σ)-Ф((α-m)/σ)
4.P{|χ-mx|<ε}=2Ф(ε/σ)
5.P{|χ-mx|<kσ}=2Ф(k)
В частности: Правило “3σ”: P{|χ-mx|<3σ}=2Ф(3)=0,9973
Замечание: Во многих задача инженерной практики считают допустимым пренебрегать вероятностями меньше, чем 1-0,9973=0,0027≈0,003
Стр. 184
 
Таблица 3. Квантили t p (k) распределения Стьюдента T(k)
k- число степеней свободы распределения; p – порядок квантили.
| 
 | 
 | 
 | 
 | 
 | k 1 | 
 | k | 
 | 
 | 
 | 2 | 
 | 
 | ||
| 
 | 
 | 
 | fT (x) Г ( | 
 | )Г 1 | ( | 
 | )( k) 1/ 2 | (1 | 
 | 
 | ) (k 2) / 2 | 
 | 
 | |
| 
 | 
 | 
 | 2 | 2 | 
 | 
 | 
 | ||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | k | 
 | 
 | |||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
| k | p | 0.750 | 0.900 | 
 | 0.950 | 
 | 
 | 0.975 | 
 | 0.990 | 0.995 | 0.999 | |||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
| 1 | 
 | 1.000 | 3.078 | 
 | 6.314 | 
 | 
 | 12.706 | 
 | 31.821 | 63.657 | 318 | |||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
| 2 | 
 | 0.816 | 1.886 | 
 | 2.920 | 
 | 
 | 4.303 | 
 | 6.965 | 9.925 | 22.3 | |||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
| 3 | 
 | 0.765 | 1.638 | 
 | 2.353 | 
 | 
 | 3.182 | 
 | 4.541 | 5.841 | 10.2 | |||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
| 4 | 
 | 0.741 | 1.533 | 
 | 2.132 | 
 | 
 | 2.776 | 
 | 3.747 | 4.604 | 7.173 | |||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
| 5 | 
 | 0.727 | 1.476 | 
 | 2.015 | 
 | 
 | 2.571 | 
 | 3.365 | 4.032 | 5.893 | |||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
| 6 | 
 | 0.718 | 1.440 | 
 | 1.943 | 
 | 
 | 2.447 | 
 | 3.143 | 3.707 | 5.208 | |||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
| 7 | 
 | 0.711 | 1.415 | 
 | 1.895 | 
 | 
 | 2.365 | 
 | 2.998 | 3.499 | 4.785 | |||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
| 8 | 
 | 0.706 | 1.397 | 
 | 1.860 | 
 | 
 | 2.306 | 
 | 2.896 | 3.355 | 4.501 | |||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
| 9 | 
 | 0.703 | 1.383 | 
 | 1.833 | 
 | 
 | 2.262 | 
 | 2.821 | 3.250 | 4.297 | |||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
| 10 | 
 | 0.700 | 1.372 | 
 | 1.812 | 
 | 
 | 2.228 | 
 | 2.764 | 3.169 | 4.144 | |||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
| 11 | 
 | 0.697 | 1.363 | 
 | 1.796 | 
 | 
 | 2.201 | 
 | 2.718 | 3.106 | 4.025 | |||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
| 12 | 
 | 0.695 | 1.356 | 
 | 1.782 | 
 | 
 | 2.179 | 
 | 2.681 | 3.055 | 3.930 | |||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
| 13 | 
 | 0.694 | 1.350 | 
 | 1.771 | 
 | 
 | 2.160 | 
 | 2.650 | 3.012 | 3.852 | |||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
| 14 | 
 | 0.692 | 1.345 | 
 | 1.761 | 
 | 
 | 2.145 | 
 | 2.624 | 2.977 | 3.787 | |||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
| 15 | 
 | 0.691 | 1.341 | 
 | 1.753 | 
 | 
 | 2.131 | 
 | 2.602 | 2.947 | 3.733 | |||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
| 16 | 
 | 0.690 | 1.337 | 
 | 1.746 | 
 | 
 | 2.120 | 
 | 2.583 | 2.921 | 3.686 | |||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
| 17 | 
 | 0.689 | 1.333 | 
 | 1.740 | 
 | 
 | 2.110 | 
 | 2.567 | 2.898 | 3.646 | |||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
| 18 | 
 | 0.688 | 1.330 | 
 | 1.734 | 
 | 
 | 2.101 | 
 | 2.552 | 2.878 | 3.610 | |||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
| 19 | 
 | 0.688 | 1.328 | 
 | 1.729 | 
 | 
 | 2.093 | 
 | 2.539 | 2.861 | 3.579 | |||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
| 20 | 
 | 0.687 | 1.325 | 
 | 1.725 | 
 | 
 | 2.086 | 
 | 2.528 | 2.845 | 3.552 | |||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
| 21 | 
 | 0.686 | 1.323 | 
 | 1.721 | 
 | 
 | 2.080 | 
 | 2.518 | 2.831 | 3.527 | |||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
| 22 | 
 | 0.686 | 1.321 | 
 | 1.717 | 
 | 
 | 2.074 | 
 | 2.508 | 2.819 | 3.505 | |||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
Стр. 185
 
| 23 | 0.685 | 1.319 | 1.714 | 2.069 | 2.500 | 2.807 | 3.485 | 
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
| 24 | 0.685 | 1.318 | 1.711 | 2.064 | 2.492 | 2.797 | 3.467 | 
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
| 25 | 0.684 | 1.316 | 1.708 | 2.060 | 2.485 | 2.787 | 3.450 | 
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
| 26 | 0.684 | 1.315 | 1.706 | 2.056 | 2.479 | 2.779 | 3.435 | 
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
| 27 | 0.684 | 1.314 | 1.703 | 2.052 | 2.473 | 2.771 | 3.421 | 
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
| 28 | 0.683 | 1.313 | 1.701 | 2.048 | 2.467 | 2.763 | 3.408 | 
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
| 29 | 0.683 | 1.311 | 1.699 | 2.045 | 2.462 | 2.756 | 3.396 | 
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
| 30 | 0.683 | 1.310 | 1.697 | 2.042 | 2.457 | 2.750 | 3.385 | 
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
| 40 | 0.681 | 1.303 | 1.684 | 2.021 | 2.423 | 2.704 | 3.307 | 
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
| 60 | 0.679 | 1.296 | 1.671 | 2.000 | 2.390 | 2.660 | 3.232 | 
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
| 120 | 0.677 | 1.289 | 1.658 | 1.980 | 2.358 | 2.617 | 3.160 | 
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
| ∞ | 0.674 | 1.282 | 1.645 | 1.960 | 2.326 | 2.576 | 3.090 | 
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
Стр. 186
 
Таблица 4. Квантили p2 (k) распределения хи-квадрат 2 (k)
k- число степеней свободы распределения; p – порядок квантили
| k | p | 0.90 | 0.95 | 0.99 | 
| 
 | 
 | 
 | 
 | 
 | 
| 1 | 
 | 2.71 | 3.84 | 6.63 | 
| 
 | 
 | 
 | 
 | 
 | 
| 2 | 
 | 4.61 | 5.99 | 9.21 | 
| 
 | 
 | 
 | 
 | 
 | 
| 3 | 
 | 6.25 | 7.81 | 11.34 | 
| 
 | 
 | 
 | 
 | 
 | 
| 4 | 
 | 7.78 | 9.49 | 13.28 | 
| 
 | 
 | 
 | 
 | 
 | 
| 5 | 
 | 9.24 | 11.07 | 15.09 | 
| 
 | 
 | 
 | 
 | 
 | 
| 6 | 
 | 10.64 | 12.59 | 16.81 | 
| 
 | 
 | 
 | 
 | 
 | 
| 7 | 
 | 12.02 | 14.07 | 18.48 | 
| 
 | 
 | 
 | 
 | 
 | 
| 8 | 
 | 13.36 | 15.51 | 20.09 | 
| 
 | 
 | 
 | 
 | 
 | 
| 9 | 
 | 14.68 | 16.92 | 21.67 | 
| 
 | 
 | 
 | 
 | 
 | 
| 10 | 
 | 15.99 | 18.31 | 23.21 | 
| 
 | 
 | 
 | 
 | 
 | 
| 11 | 
 | 17.28 | 19.68 | 24.72 | 
| 
 | 
 | 
 | 
 | 
 | 
| 12 | 
 | 18.55 | 21.03 | 26.22 | 
| 
 | 
 | 
 | 
 | 
 | 
| 13 | 
 | 19.81 | 22.36 | 27.69 | 
| 
 | 
 | 
 | 
 | 
 | 
| 14 | 
 | 21.06 | 23.68 | 29.14 | 
| 
 | 
 | 
 | 
 | 
 | 
| 15 | 
 | 22.31 | 25.00 | 30.58 | 
| 
 | 
 | 
 | 
 | 
 | 
| 16 | 
 | 23.54 | 26.30 | 32.00 | 
| 
 | 
 | 
 | 
 | 
 | 
| 17 | 
 | 24.77 | 27.59 | 33.41 | 
| 
 | 
 | 
 | 
 | 
 | 
| 18 | 
 | 25.99 | 28.87 | 34.81 | 
| 
 | 
 | 
 | 
 | 
 | 
| 19 | 
 | 27.20 | 30.14 | 36.19 | 
| 
 | 
 | 
 | 
 | 
 | 
| 20 | 
 | 28.41 | 31.14 | 37.57 | 
| 
 | 
 | 
 | 
 | 
 | 
| 21 | 
 | 29.62 | 32.67 | 38.93 | 
| 
 | 
 | 
 | 
 | 
 | 
| 22 | 
 | 30.81 | 33.92 | 40.29 | 
| 
 | 
 | 
 | 
 | 
 | 
| 23 | 
 | 32.01 | 35.17 | 41.64 | 
| 
 | 
 | 
 | 
 | 
 | 
Стр. 187
 
| 24 | 33.20 | 36.42 | 42.98 | 
| 
 | 
 | 
 | 
 | 
| 25 | 34.38 | 37.65 | 44.31 | 
| 
 | 
 | 
 | 
 | 
| 26 | 35.56 | 38.89 | 45.64 | 
| 
 | 
 | 
 | 
 | 
| 27 | 36.74 | 40.11 | 46.96 | 
| 
 | 
 | 
 | 
 | 
| 28 | 37.92 | 41.34 | 48.28 | 
| 
 | 
 | 
 | 
 | 
| 29 | 39.09 | 42.56 | 49.59 | 
| 
 | 
 | 
 | 
 | 
| 30 | 40.26 | 43.77 | 50.89 | 
| 
 | 
 | 
 | 
 | 
| 40 | 51.80 | 55.76 | 63.69 | 
| 
 | 
 | 
 | 
 | 
| 50 | 63.17 | 67.50 | 76.15 | 
| 
 | 
 | 
 | 
 | 
| 60 | 74.40 | 79.08 | 88.38 | 
| 
 | 
 | 
 | 
 | 
| 70 | 85.53 | 90.53 | 100.42 | 
| 
 | 
 | 
 | 
 | 
| 80 | 96.58 | 101.88 | 112.33 | 
| 
 | 
 | 
 | 
 | 
| 90 | 107.56 | 113.14 | 124.12 | 
| 
 | 
 | 
 | 
 | 
| 100 | 118.50 | 124.34 | 135.81 | 
| 
 | 
 | 
 | 
 | 
Плотность вероятности распределения хи-квадрат 2 (k) :
| 
 | 0, | x 0; | 
 | 
 | 
| f 2 | (x) 2 k / 2 Г 1 (k / 2)x(k 2) / 2 e x / 2 | , | x 0. | |
| 
 | 
 | 
 | 
 | 
 | 
Стр. 188
 
Таблица 5. Квантили Fp (k1 , k2 ) распределения Фишера F(k1 , k2 )
k1 , k2 - числа степеней свободы распределения; p – порядок квантили
| 
 | 
 | 
 | 
 | 
 | p=0.95 | 
 | 
 | 
 | 
 | 
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
| k2 k1 | 4 | 6 | 12 | 24 | 30 | 40 | 60 | 120 | ∞ | 
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
| 1 | 224.6 | 234.0 | 244.9 | 249.0 | 250.1 | 251.1 | 252.2 | 253.3 | 254.3 | 
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
| 2 | 19.2 | 19.3 | 19.4 | 19.5 | 19.5 | 19.5 | 19.5 | 19.5 | 19.5 | 
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
| 3 | 9.1 | 8.9 | 8.7 | 8.6 | 8.6 | 8.6 | 8.6 | 8.5 | 8.5 | 
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
| 4 | 6.4 | 6.2 | 5.9 | 5.8 | 5.7 | 5.7 | 5.7 | 5.7 | 5.6 | 
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
| 5 | 5.2 | 5.0 | 4.7 | 4.5 | 4.5 | 4.5 | 4.4 | 4.4 | 4.4 | 
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
| 6 | 4.5 | 4.3 | 4.0 | 3.8 | 3.8 | 3.8 | 3.7 | 3.7 | 3.7 | 
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
| 7 | 4.1 | 3.9 | 3.6 | 3.4 | 3.4 | 3.3 | 3.3 | 3.3 | 3.2 | 
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
| 8 | 3.8 | 3.6 | 3.3 | 3.1 | 3.1 | 3.0 | 3.0 | 3.0 | 2.9 | 
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
| 9 | 3.6 | 3.4 | 3.1 | 2.9 | 2.9 | 2.8 | 2.8 | 2.7 | 2.7 | 
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
| 10 | 3.5 | 3.2 | 2.9 | 2.7 | 2.7 | 2.7 | 2.6 | 2.6 | 2.5 | 
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
| 11 | 3.4 | 3.1 | 2.8 | 2.6 | 2.6 | 2.5 | 2.5 | 2.4 | 2.4 | 
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
| 12 | 3.3 | 3.0 | 2.7 | 2.5 | 2.5 | 2.4 | 2.4 | 2.3 | 2.3 | 
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
| 13 | 3.2 | 2.9 | 2.6 | 2.4 | 2.4 | 2.3 | 2.3 | 2.3 | 2.2 | 
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
| 14 | 3.1 | 2.8 | 2.5 | 2.3 | 2.3 | 2.3 | 2.2 | 2.2 | 2.1 | 
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
| 15 | 3.1 | 2.8 | 2.5 | 2.3 | 2.2 | 2.2 | 2.2 | 2.1 | 2.1 | 
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
| 16 | 3.0 | 2.7 | 2.4 | 2.2 | 2.2 | 2.2 | 2.1 | 2.1 | 2.0 | 
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
| 17 | 3.0 | 2.7 | 2.4 | 2.2 | 2.1 | 2.1 | 2.1 | 2.0 | 2.0 | 
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
| 18 | 2.9 | 2.7 | 2.3 | 2.1 | 2.1 | 2.1 | 2.1 | 2.0 | 1.9 | 
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
| 19 | 2.9 | 2.6 | 2.3 | 2.1 | 2.1 | 2.0 | 2.0 | 1.9 | 1.9 | 
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
| 20 | 2.9 | 2.6 | 2.3 | 2.1 | 2.0 | 2.0 | 1.9 | 1.9 | 1.8 | 
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
| 22 | 2.8 | 2.5 | 2.2 | 2.0 | 2.0 | 1.9 | 1.9 | 1.8 | 1.8 | 
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
Стр. 189
 
| 24 | 
 | 2.8 | 
 | 
 | 
 | 2.5 | 
 | 
 | 
 | 
 | 2.2 | 
 | 2.0 | 
 | 
 | 1.9 | 
 | 1.9 | 
 | 1.8 | 
 | 1.8 | 
 | 1.7 | ||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||
| 26 | 
 | 2.7 | 
 | 
 | 
 | 2.5 | 
 | 
 | 
 | 
 | 2.1 | 
 | 1.9 | 
 | 
 | 1.9 | 
 | 1.9 | 
 | 1.8 | 
 | 1.7 | 
 | 1.7 | ||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||
| 28 | 
 | 2.7 | 
 | 
 | 
 | 2.4 | 
 | 
 | 
 | 
 | 2.1 | 
 | 1.9 | 
 | 
 | 1.9 | 
 | 1.8 | 
 | 1.8 | 
 | 1.7 | 
 | 1.7 | ||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||
| 30 | 
 | 2.7 | 
 | 
 | 
 | 2.4 | 
 | 
 | 
 | 
 | 2.1 | 
 | 1.9 | 
 | 
 | 1.8 | 
 | 1.8 | 
 | 1.7 | 
 | 1.7 | 
 | 1.6 | ||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||
| 40 | 
 | 2.6 | 
 | 
 | 
 | 2.3 | 
 | 
 | 
 | 
 | 2.0 | 
 | 1.8 | 
 | 
 | 1.7 | 
 | 1.7 | 
 | 1.6 | 
 | 1.6 | 
 | 1.5 | ||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||
| 60 | 
 | 2.5 | 
 | 
 | 
 | 2.3 | 
 | 
 | 
 | 
 | 1.9 | 
 | 1.7 | 
 | 
 | 1.6 | 
 | 1.6 | 
 | 1.5 | 
 | 1.5 | 
 | 1.4 | ||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||
| 120 | 
 | 2.4 | 
 | 
 | 
 | 2.2 | 
 | 
 | 
 | 
 | 1.8 | 
 | 1.6 | 
 | 
 | 1.6 | 
 | 1.5 | 
 | 1.4 | 
 | 1.4 | 
 | 1.3 | ||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||
| ∞ | 
 | 
 | 2.4 | 
 | 
 | 
 | 2.1 | 
 | 
 | 
 | 
 | 1.8 | 
 | 1.5 | 
 | 
 | 1.5 | 
 | 1.4 | 
 | 1.3 | 
 | 1.2 | 
 | 1.0 | |||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||
| 
 | 
 | 
 | 
 | 
 | Плотность вероятности распределения Фишера F(k1 , k2 ) : | 
 | 
 | |||||||||||||||||||||||
| 
 | 
 | 
 | 0, | x 0 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||
| f | 
 | 
 | 
 | 
 | k k | 
 | 
 | 
 | 
 | 
 | k | 
 | k | 
 | 
 | k | 
 | 
 | k | 
 | 
 | 
 | 
 | |||||||
| F | (x) | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||
| 
 | 
 | 
 | Г ( | 1 | 
 | 
 | )Г | 1 | ( | 1 | )Г 1 | ( | 
 | )( | 1 | )k1 / 2 x(k1 | / 2) 1 (1 | 
 | 1 | x) (k1 | k2 ) / 2 , | x 0. | ||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 2 | 
 | k2 | 
 | 
 | k2 | 
 | 
 | 
 | 
 | ||||||
| k1 , k2 натуральные | числа | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||
Стр. 190
