
Пособие по математической статистике
.pdf35 96 31 53 07 |
26 89 80 93 54 |
33 35 13 54 62 |
77 97 45 00 24 |
90 10 33 93 33 |
59 80 80 83 91 |
45 42 72 68 42 |
83 60 94 97 00 |
13 02 12 48 92 |
78 56 52 01 06 |
46 05 88 52 36 |
01 39 09 22 86 |
77 28 14 40 77 |
93 91 08 36 47 |
70 61 74 29 41 |
32 17 90 05 97 |
87 37 92 52 41 |
05 56 70 70 07 |
86 74 31 71 57 |
85 39 41 18 38 |
69 23 46 14 06 |
20 11 74 52 04 |
15 95 66 00 00 |
18 74 39 24 23 |
97 11 89 63 35 |
19 56 54 14 30 |
01 75 87 53 79 |
40 41 92 15 85 |
66 67 43 68 06 |
84 96 28 52 07 |
45 15 51 49 38 |
19 47 60 72 46 |
43 66 79 45 43 |
59 04 79 00 33 |
20 82 66 95 41 |
94 86 43 19 94 |
36 16 81 08 51 |
34 88 88 15 53 |
01 54 03 54 56 |
05 01 45 11 76 |
98 08 62 48 26 |
45 24 02 84 04 |
44 99 90 88 96 |
39 09 47 34 07 |
35 44 13 18 80 |
33 18 51 62 32 |
41 94 15 09 49 |
89 43 54 85 81 |
88 69 54 19 94 |
37 54 87 30 43 |
80 95 10 04 06 |
96 38 27 07 74 |
20 15 12 33 87 |
25 01 62 52 98 |
94 62 46 11 71 |
79 75 24 91 40 |
71 96 12 82 96 |
69 86 10 25 91 |
74 85 22 05 39 |
00 38 75 95 79 |
18 63 33 25 37 |
98 14 50 65 71 |
31 01 02 46 74 |
05 45 56 14 27 |
77 93 89 19 36 |
74 02 94 39 02 |
77 55 73 22 70 |
97 79 01 71 19 |
52 52 75 80 21 |
80 81 45 17 48 |
|
54 17 84 58 11 |
80 99 33 71 43 |
05 33 51 29 69 |
56 12 71 92 55 |
36 04 09 03 24 |
|
11 66 44 98 83 |
52 07 98 48 27 |
59 38 17 15 39 |
09 97 33 34 40 |
88 46 12 33 56 |
|
48 32 47 79 28 |
31 24 66 47 10 |
02 29 53 68 70 |
32 30 75 75 46 |
25 02 00 99 94 |
|
69 07 49 41 38 |
87 63 79 19 76 |
35 58 40 44 01 |
10 51 82 16 15 |
01 84 87 69 38 |
Стр. 181

Таблица 2. Значения нормированной функции Лапласа
|
|
|
|
|
|
1 |
|
х |
t 2 |
|
|
|
|
|
|
|
|
|
Ф0 (х) |
|
е 2 dt |
|
|
|
|
||||
|
|
|
|
|
|
|
|
|
|
|
||||
|
|
|
|
|
2 |
|
|
|
|
|||||
|
|
|
|
|
|
|
0 |
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
X |
0 |
1 |
2 |
3 |
|
4 |
|
|
|
5 |
6 |
7 |
8 |
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0.0 |
0.00000 |
00399 |
00798 |
01197 |
01595 |
|
|
01994 |
02392 |
02790 |
03188 |
03586 |
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0.1 |
03983 |
04380 |
04776 |
05172 |
05567 |
|
|
05962 |
06356 |
06749 |
07142 |
07535 |
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0.2 |
07926 |
08317 |
08706 |
09095 |
09483 |
|
|
09871 |
10257 |
10642 |
11026 |
11409 |
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0.3 |
11791 |
12172 |
12552 |
12930 |
13307 |
|
|
13683 |
14058 |
14431 |
14803 |
15173 |
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0.4 |
15542 |
15910 |
16276 |
16640 |
17003 |
|
|
17364 |
17724 |
18082 |
18439 |
18793 |
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0.5 |
19146 |
19497 |
19847 |
20194 |
20540 |
|
|
20884 |
21226 |
21566 |
21904 |
22240 |
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0.6 |
22575 |
22907 |
23237 |
23565 |
23891 |
|
|
24215 |
24537 |
24857 |
25175 |
25490 |
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0.7 |
25804 |
26115 |
26424 |
26730 |
27035 |
|
|
27337 |
27637 |
27935 |
28230 |
28524 |
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0.8 |
28814 |
29103 |
29389 |
29673 |
29955 |
|
|
30234 |
30511 |
30785 |
31057 |
31327 |
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0.9 |
31594 |
31859 |
32121 |
32381 |
32639 |
|
|
32894 |
33147 |
33398 |
33646 |
33891 |
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1.0 |
34134 |
34375 |
34614 |
34849 |
35083 |
|
|
35314 |
35543 |
35769 |
35993 |
36214 |
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1.1 |
36433 |
36650 |
36864 |
37076 |
37286 |
|
|
37493 |
37698 |
37900 |
38100 |
38298 |
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1.2 |
38493 |
38686 |
38877 |
39065 |
39251 |
|
|
39435 |
39617 |
39796 |
39973 |
40147 |
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1.3 |
40320 |
40490 |
40658 |
40824 |
40988 |
|
|
41149 |
41308 |
41466 |
41621 |
41774 |
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1.4 |
41924 |
42073 |
42220 |
42364 |
42507 |
|
|
42647 |
42785 |
42922 |
43056 |
43189 |
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1.5 |
43319 |
43448 |
43574 |
43699 |
43822 |
|
|
43943 |
44062 |
44179 |
44295 |
44408 |
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1.6 |
44520 |
44630 |
44738 |
44845 |
44950 |
|
|
45053 |
45154 |
45254 |
45352 |
45449 |
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1.7 |
45543 |
45637 |
45728 |
45818 |
45907 |
|
|
45994 |
46080 |
46164 |
46246 |
46327 |
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1.8 |
46407 |
46485 |
46562 |
46638 |
46712 |
|
|
46784 |
46856 |
46926 |
46995 |
47062 |
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1.9 |
47128 |
47193 |
47257 |
47320 |
47381 |
|
|
47441 |
47500 |
47558 |
47615 |
47670 |
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Стр. 182

2.0 |
47725 |
47778 |
|
47831 |
|
47882 |
|
47932 |
47982 |
|
48030 |
48077 |
48124 |
48169 |
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2.1 |
48214 |
48257 |
|
48300 |
|
48341 |
|
48382 |
48422 |
|
48461 |
48500 |
48537 |
48574 |
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2.2 |
48610 |
48645 |
|
48679 |
|
48713 |
|
48745 |
48778 |
|
48809 |
48840 |
48870 |
48899 |
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2.3 |
48928 |
48956 |
|
48983 |
|
49010 |
|
49036 |
49061 |
|
49086 |
49111 |
49134 |
49158 |
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2.4 |
49180 |
49202 |
|
49224 |
|
49245 |
|
49266 |
49286 |
|
49305 |
49324 |
49343 |
49361 |
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2.5 |
49379 |
49396 |
|
49413 |
|
49430 |
|
49446 |
49461 |
|
49477 |
49492 |
49506 |
49520 |
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2.6 |
49534 |
49547 |
|
49560 |
|
49573 |
|
49585 |
49598 |
|
49609 |
49621 |
49632 |
49643 |
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2.7 |
49653 |
49664 |
|
49674 |
|
49683 |
|
49693 |
49702 |
|
49711 |
49720 |
49728 |
49736 |
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2.8 |
49744 |
49752 |
|
49760 |
|
49767 |
|
49774 |
49781 |
|
49788 |
49795 |
49801 |
49807 |
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2.9 |
49813 |
49819 |
|
49825 |
|
49831 |
|
49836 |
49841 |
|
49846 |
49851 |
49856 |
49861 |
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
|
x |
|
|
3.0 |
|
3.5 |
4.0 |
|
|
|
5.0 |
|
|
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||
|
|
|
Ф0 (х) |
|
0.49865 |
|
0.49977 |
0.499968 |
|
0.49999997 |
|
|
||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Квантили распределения Up нормального распределения N(0;1)
P |
0,90 |
0,95 |
0,975 |
0,99 |
0,995 |
0,999 |
0,9995 |
|
Up |
1,282 |
1,645 |
1,966 |
2,326 |
|
2,576 |
3,096 |
3,291 |
Замечание о нахождении квантилей порядка «р» с использованием таблицы Лапласа.
Пусть нужно найти квантиль порядка «р»нормального стандартного распределения.
F(xp)=0,5+Ф(хр)=р ↔ хр=(р-0,5)
Например, нужно найти квантиль порядка 0,8. Вычислим р-0,5=0,8-0,5=0,3.
(0,3)≈0,85 (смотрите значение в таблице Лапласа)
Случайная величина χ распределена нормально с параметрами m, σ, если
функция плотности задается формулой
( )
f(x)= √ *
183

Если m=0, σ=1, то имеем стандартизированную случайную величину.
Функция плотности: (x)=√
[есть таблица значений этой функции]
1 |
F(x) |
|
Функция распределения |
|
|
|
||||||
1/2 |
|
|
|||||||
|
|
|
|
|
|
|
|
|
|
|
( |
m) |
|
|
|
|
|||
|
|
|
|||||||
|
|
|
|
|
|
|
|
|
|
F(x)=∫ √ |
|
|
|
|
m |
X |
|||
|
|
|
|
|
|
Чтобы найти значения функции распределения используют таблицу значений
функции Лапласа
Ф(x)=∫ √
Ф(-x)=- Ф(x)
Ф(х)=1/2
F(x)=0,5+Ф((x-m)/σ)
Основные формулы для вычисления вероятностей попадания в интервалы
1.Р{χ<α}=0,5+Ф((α-m)/σ)
2.P{χ>β}=0,5- Ф((β-m)/σ)
3.P{α<χ<β}=Ф((β-m)/σ)-Ф((α-m)/σ)
4.P{|χ-mx|<ε}=2Ф(ε/σ)
5.P{|χ-mx|<kσ}=2Ф(k)
В частности: Правило “3σ”: P{|χ-mx|<3σ}=2Ф(3)=0,9973
Замечание: Во многих задача инженерной практики считают допустимым пренебрегать вероятностями меньше, чем 1-0,9973=0,0027≈0,003
Стр. 184

Таблица 3. Квантили t p (k) распределения Стьюдента T(k)
k- число степеней свободы распределения; p – порядок квантили.
|
|
|
|
|
k 1 |
|
k |
|
|
|
2 |
|
|
||
|
|
|
fT (x) Г ( |
|
)Г 1 |
( |
|
)( k) 1/ 2 |
(1 |
|
|
) (k 2) / 2 |
|
|
|
|
|
|
2 |
2 |
|
|
|
||||||||
|
|
|
|
|
|
|
|
|
|
k |
|
|
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
k |
p |
0.750 |
0.900 |
|
0.950 |
|
|
0.975 |
|
0.990 |
0.995 |
0.999 |
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
1.000 |
3.078 |
|
6.314 |
|
|
12.706 |
|
31.821 |
63.657 |
318 |
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
0.816 |
1.886 |
|
2.920 |
|
|
4.303 |
|
6.965 |
9.925 |
22.3 |
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
0.765 |
1.638 |
|
2.353 |
|
|
3.182 |
|
4.541 |
5.841 |
10.2 |
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
0.741 |
1.533 |
|
2.132 |
|
|
2.776 |
|
3.747 |
4.604 |
7.173 |
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
0.727 |
1.476 |
|
2.015 |
|
|
2.571 |
|
3.365 |
4.032 |
5.893 |
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
0.718 |
1.440 |
|
1.943 |
|
|
2.447 |
|
3.143 |
3.707 |
5.208 |
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
0.711 |
1.415 |
|
1.895 |
|
|
2.365 |
|
2.998 |
3.499 |
4.785 |
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
0.706 |
1.397 |
|
1.860 |
|
|
2.306 |
|
2.896 |
3.355 |
4.501 |
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
0.703 |
1.383 |
|
1.833 |
|
|
2.262 |
|
2.821 |
3.250 |
4.297 |
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
0.700 |
1.372 |
|
1.812 |
|
|
2.228 |
|
2.764 |
3.169 |
4.144 |
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
0.697 |
1.363 |
|
1.796 |
|
|
2.201 |
|
2.718 |
3.106 |
4.025 |
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
0.695 |
1.356 |
|
1.782 |
|
|
2.179 |
|
2.681 |
3.055 |
3.930 |
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
0.694 |
1.350 |
|
1.771 |
|
|
2.160 |
|
2.650 |
3.012 |
3.852 |
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
0.692 |
1.345 |
|
1.761 |
|
|
2.145 |
|
2.624 |
2.977 |
3.787 |
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
0.691 |
1.341 |
|
1.753 |
|
|
2.131 |
|
2.602 |
2.947 |
3.733 |
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
0.690 |
1.337 |
|
1.746 |
|
|
2.120 |
|
2.583 |
2.921 |
3.686 |
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
0.689 |
1.333 |
|
1.740 |
|
|
2.110 |
|
2.567 |
2.898 |
3.646 |
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
0.688 |
1.330 |
|
1.734 |
|
|
2.101 |
|
2.552 |
2.878 |
3.610 |
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
0.688 |
1.328 |
|
1.729 |
|
|
2.093 |
|
2.539 |
2.861 |
3.579 |
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
0.687 |
1.325 |
|
1.725 |
|
|
2.086 |
|
2.528 |
2.845 |
3.552 |
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
0.686 |
1.323 |
|
1.721 |
|
|
2.080 |
|
2.518 |
2.831 |
3.527 |
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
0.686 |
1.321 |
|
1.717 |
|
|
2.074 |
|
2.508 |
2.819 |
3.505 |
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Стр. 185

23 |
0.685 |
1.319 |
1.714 |
2.069 |
2.500 |
2.807 |
3.485 |
|
|
|
|
|
|
|
|
24 |
0.685 |
1.318 |
1.711 |
2.064 |
2.492 |
2.797 |
3.467 |
|
|
|
|
|
|
|
|
25 |
0.684 |
1.316 |
1.708 |
2.060 |
2.485 |
2.787 |
3.450 |
|
|
|
|
|
|
|
|
26 |
0.684 |
1.315 |
1.706 |
2.056 |
2.479 |
2.779 |
3.435 |
|
|
|
|
|
|
|
|
27 |
0.684 |
1.314 |
1.703 |
2.052 |
2.473 |
2.771 |
3.421 |
|
|
|
|
|
|
|
|
28 |
0.683 |
1.313 |
1.701 |
2.048 |
2.467 |
2.763 |
3.408 |
|
|
|
|
|
|
|
|
29 |
0.683 |
1.311 |
1.699 |
2.045 |
2.462 |
2.756 |
3.396 |
|
|
|
|
|
|
|
|
30 |
0.683 |
1.310 |
1.697 |
2.042 |
2.457 |
2.750 |
3.385 |
|
|
|
|
|
|
|
|
40 |
0.681 |
1.303 |
1.684 |
2.021 |
2.423 |
2.704 |
3.307 |
|
|
|
|
|
|
|
|
60 |
0.679 |
1.296 |
1.671 |
2.000 |
2.390 |
2.660 |
3.232 |
|
|
|
|
|
|
|
|
120 |
0.677 |
1.289 |
1.658 |
1.980 |
2.358 |
2.617 |
3.160 |
|
|
|
|
|
|
|
|
∞ |
0.674 |
1.282 |
1.645 |
1.960 |
2.326 |
2.576 |
3.090 |
|
|
|
|
|
|
|
|
Стр. 186

Таблица 4. Квантили p2 (k) распределения хи-квадрат 2 (k)
k- число степеней свободы распределения; p – порядок квантили
k |
p |
0.90 |
0.95 |
0.99 |
|
|
|
|
|
1 |
|
2.71 |
3.84 |
6.63 |
|
|
|
|
|
2 |
|
4.61 |
5.99 |
9.21 |
|
|
|
|
|
3 |
|
6.25 |
7.81 |
11.34 |
|
|
|
|
|
4 |
|
7.78 |
9.49 |
13.28 |
|
|
|
|
|
5 |
|
9.24 |
11.07 |
15.09 |
|
|
|
|
|
6 |
|
10.64 |
12.59 |
16.81 |
|
|
|
|
|
7 |
|
12.02 |
14.07 |
18.48 |
|
|
|
|
|
8 |
|
13.36 |
15.51 |
20.09 |
|
|
|
|
|
9 |
|
14.68 |
16.92 |
21.67 |
|
|
|
|
|
10 |
|
15.99 |
18.31 |
23.21 |
|
|
|
|
|
11 |
|
17.28 |
19.68 |
24.72 |
|
|
|
|
|
12 |
|
18.55 |
21.03 |
26.22 |
|
|
|
|
|
13 |
|
19.81 |
22.36 |
27.69 |
|
|
|
|
|
14 |
|
21.06 |
23.68 |
29.14 |
|
|
|
|
|
15 |
|
22.31 |
25.00 |
30.58 |
|
|
|
|
|
16 |
|
23.54 |
26.30 |
32.00 |
|
|
|
|
|
17 |
|
24.77 |
27.59 |
33.41 |
|
|
|
|
|
18 |
|
25.99 |
28.87 |
34.81 |
|
|
|
|
|
19 |
|
27.20 |
30.14 |
36.19 |
|
|
|
|
|
20 |
|
28.41 |
31.14 |
37.57 |
|
|
|
|
|
21 |
|
29.62 |
32.67 |
38.93 |
|
|
|
|
|
22 |
|
30.81 |
33.92 |
40.29 |
|
|
|
|
|
23 |
|
32.01 |
35.17 |
41.64 |
|
|
|
|
|
Стр. 187

24 |
33.20 |
36.42 |
42.98 |
|
|
|
|
25 |
34.38 |
37.65 |
44.31 |
|
|
|
|
26 |
35.56 |
38.89 |
45.64 |
|
|
|
|
27 |
36.74 |
40.11 |
46.96 |
|
|
|
|
28 |
37.92 |
41.34 |
48.28 |
|
|
|
|
29 |
39.09 |
42.56 |
49.59 |
|
|
|
|
30 |
40.26 |
43.77 |
50.89 |
|
|
|
|
40 |
51.80 |
55.76 |
63.69 |
|
|
|
|
50 |
63.17 |
67.50 |
76.15 |
|
|
|
|
60 |
74.40 |
79.08 |
88.38 |
|
|
|
|
70 |
85.53 |
90.53 |
100.42 |
|
|
|
|
80 |
96.58 |
101.88 |
112.33 |
|
|
|
|
90 |
107.56 |
113.14 |
124.12 |
|
|
|
|
100 |
118.50 |
124.34 |
135.81 |
|
|
|
|
Плотность вероятности распределения хи-квадрат 2 (k) :
|
0, |
x 0; |
|
|
f 2 |
(x) 2 k / 2 Г 1 (k / 2)x(k 2) / 2 e x / 2 |
, |
x 0. |
|
|
|
|
|
|
Стр. 188

Таблица 5. Квантили Fp (k1 , k2 ) распределения Фишера F(k1 , k2 )
k1 , k2 - числа степеней свободы распределения; p – порядок квантили
|
|
|
|
|
p=0.95 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
k2 k1 |
4 |
6 |
12 |
24 |
30 |
40 |
60 |
120 |
∞ |
|
|
|
|
|
|
|
|
|
|
1 |
224.6 |
234.0 |
244.9 |
249.0 |
250.1 |
251.1 |
252.2 |
253.3 |
254.3 |
|
|
|
|
|
|
|
|
|
|
2 |
19.2 |
19.3 |
19.4 |
19.5 |
19.5 |
19.5 |
19.5 |
19.5 |
19.5 |
|
|
|
|
|
|
|
|
|
|
3 |
9.1 |
8.9 |
8.7 |
8.6 |
8.6 |
8.6 |
8.6 |
8.5 |
8.5 |
|
|
|
|
|
|
|
|
|
|
4 |
6.4 |
6.2 |
5.9 |
5.8 |
5.7 |
5.7 |
5.7 |
5.7 |
5.6 |
|
|
|
|
|
|
|
|
|
|
5 |
5.2 |
5.0 |
4.7 |
4.5 |
4.5 |
4.5 |
4.4 |
4.4 |
4.4 |
|
|
|
|
|
|
|
|
|
|
6 |
4.5 |
4.3 |
4.0 |
3.8 |
3.8 |
3.8 |
3.7 |
3.7 |
3.7 |
|
|
|
|
|
|
|
|
|
|
7 |
4.1 |
3.9 |
3.6 |
3.4 |
3.4 |
3.3 |
3.3 |
3.3 |
3.2 |
|
|
|
|
|
|
|
|
|
|
8 |
3.8 |
3.6 |
3.3 |
3.1 |
3.1 |
3.0 |
3.0 |
3.0 |
2.9 |
|
|
|
|
|
|
|
|
|
|
9 |
3.6 |
3.4 |
3.1 |
2.9 |
2.9 |
2.8 |
2.8 |
2.7 |
2.7 |
|
|
|
|
|
|
|
|
|
|
10 |
3.5 |
3.2 |
2.9 |
2.7 |
2.7 |
2.7 |
2.6 |
2.6 |
2.5 |
|
|
|
|
|
|
|
|
|
|
11 |
3.4 |
3.1 |
2.8 |
2.6 |
2.6 |
2.5 |
2.5 |
2.4 |
2.4 |
|
|
|
|
|
|
|
|
|
|
12 |
3.3 |
3.0 |
2.7 |
2.5 |
2.5 |
2.4 |
2.4 |
2.3 |
2.3 |
|
|
|
|
|
|
|
|
|
|
13 |
3.2 |
2.9 |
2.6 |
2.4 |
2.4 |
2.3 |
2.3 |
2.3 |
2.2 |
|
|
|
|
|
|
|
|
|
|
14 |
3.1 |
2.8 |
2.5 |
2.3 |
2.3 |
2.3 |
2.2 |
2.2 |
2.1 |
|
|
|
|
|
|
|
|
|
|
15 |
3.1 |
2.8 |
2.5 |
2.3 |
2.2 |
2.2 |
2.2 |
2.1 |
2.1 |
|
|
|
|
|
|
|
|
|
|
16 |
3.0 |
2.7 |
2.4 |
2.2 |
2.2 |
2.2 |
2.1 |
2.1 |
2.0 |
|
|
|
|
|
|
|
|
|
|
17 |
3.0 |
2.7 |
2.4 |
2.2 |
2.1 |
2.1 |
2.1 |
2.0 |
2.0 |
|
|
|
|
|
|
|
|
|
|
18 |
2.9 |
2.7 |
2.3 |
2.1 |
2.1 |
2.1 |
2.1 |
2.0 |
1.9 |
|
|
|
|
|
|
|
|
|
|
19 |
2.9 |
2.6 |
2.3 |
2.1 |
2.1 |
2.0 |
2.0 |
1.9 |
1.9 |
|
|
|
|
|
|
|
|
|
|
20 |
2.9 |
2.6 |
2.3 |
2.1 |
2.0 |
2.0 |
1.9 |
1.9 |
1.8 |
|
|
|
|
|
|
|
|
|
|
22 |
2.8 |
2.5 |
2.2 |
2.0 |
2.0 |
1.9 |
1.9 |
1.8 |
1.8 |
|
|
|
|
|
|
|
|
|
|
Стр. 189

24 |
|
2.8 |
|
|
|
2.5 |
|
|
|
|
2.2 |
|
2.0 |
|
|
1.9 |
|
1.9 |
|
1.8 |
|
1.8 |
|
1.7 |
||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
26 |
|
2.7 |
|
|
|
2.5 |
|
|
|
|
2.1 |
|
1.9 |
|
|
1.9 |
|
1.9 |
|
1.8 |
|
1.7 |
|
1.7 |
||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
28 |
|
2.7 |
|
|
|
2.4 |
|
|
|
|
2.1 |
|
1.9 |
|
|
1.9 |
|
1.8 |
|
1.8 |
|
1.7 |
|
1.7 |
||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
30 |
|
2.7 |
|
|
|
2.4 |
|
|
|
|
2.1 |
|
1.9 |
|
|
1.8 |
|
1.8 |
|
1.7 |
|
1.7 |
|
1.6 |
||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
40 |
|
2.6 |
|
|
|
2.3 |
|
|
|
|
2.0 |
|
1.8 |
|
|
1.7 |
|
1.7 |
|
1.6 |
|
1.6 |
|
1.5 |
||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
60 |
|
2.5 |
|
|
|
2.3 |
|
|
|
|
1.9 |
|
1.7 |
|
|
1.6 |
|
1.6 |
|
1.5 |
|
1.5 |
|
1.4 |
||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
120 |
|
2.4 |
|
|
|
2.2 |
|
|
|
|
1.8 |
|
1.6 |
|
|
1.6 |
|
1.5 |
|
1.4 |
|
1.4 |
|
1.3 |
||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
∞ |
|
|
2.4 |
|
|
|
2.1 |
|
|
|
|
1.8 |
|
1.5 |
|
|
1.5 |
|
1.4 |
|
1.3 |
|
1.2 |
|
1.0 |
|||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||
|
|
|
|
|
Плотность вероятности распределения Фишера F(k1 , k2 ) : |
|
|
|||||||||||||||||||||||
|
|
|
0, |
x 0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
f |
|
|
|
|
k k |
|
|
|
|
|
k |
|
k |
|
|
k |
|
|
k |
|
|
|
|
|||||||
F |
(x) |
|
2 |
|
|
|
|
|
2 |
|
|
|
|
|
|
|
||||||||||||||
|
|
|
Г ( |
1 |
|
|
)Г |
1 |
( |
1 |
)Г 1 |
( |
|
)( |
1 |
)k1 / 2 x(k1 |
/ 2) 1 (1 |
|
1 |
x) (k1 |
k2 ) / 2 , |
x 0. |
||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||
|
|
|
|
|
|
|
2 |
|
|
|
|
2 |
|
|
2 |
|
k2 |
|
|
k2 |
|
|
|
|
||||||
k1 , k2 натуральные |
числа |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Стр. 190