
- •Избранные лекции по токсикологической химии Учебное пособие для студентов очного
- •Содержание
- •Введение в токсикологическую химию
- •Особенности химико-токсикологического анализа.
- •Организационная структура судебно-медицинской и судебно-химической экспертизы в рф
- •Правовые и методологические основы судебно-химической экспертизы
- •Правила производства судебно-химической экспертизы вещественных доказательств в схо смл Бюро смэ органов здравоохранения
- •Помещения лаборатории
- •Порядок проведения судебно-химической экспертизы Основные правила судебно-химического анализа (сха)
- •Документация при производстве судебно-химической экспертизы
- •Яд. Общая характеристика токсического действия. Формирование токсического эффекта как фактор взаимодействия яда, организма и окружающей среды. Понятие «яд», «отравление»
- •Классификация отравлений
- •Общая характеристика и классификация веществ, вызывающих отравление
- •2. Токсические вещества неорганической природы:
- •Токсикокинетика чужеродных соединений
- •Всасывание чужеродных соединений
- •Факторы, влияющие на абсорбцию чужеродных соединений
- •Распределение. Факторы, влияющие на распределение чужеродных веществ в организме.
- •Метаболизм чужеродных соединений
- •2. Восстановление:
- •Группа веществ, изолируемых дистилляцией («летучие яды»)
- •5.Сложные эфиры алифатического ряда
- •Объекты судебно-химического исследования. Пробоподготовка
- •Одноатомные спирты Этиловый спирт в химико-токсикологическом отношении
- •Токсикологическое значение спиртов
- •Токсикокинетика спиртов
- •Объекты исследования и пробоподготовка
- •Правила отбора проб для исследования
- •Экспертиза алкогольного опьянения. Клиническая диагностика
- •Химические свойства спиртов. Методы анализа в судебно-химической экспертизе отравлений и экспертизе алкогольного опьянения.
- •Количественное определение спиртов
- •Теоретические предпосылки метода
- •Основные газохроматографические параметры
- •Относительное время удерживания является величиной более постоянной, так как на него меньше влияют условия проведения хроматографического процесса.
- •Аппаратурное оформление метода гжх
- •Определение этанола методом гжх
- •Оценка результатов количественного определения этанола в крови человека
- •Группа веществ, изолируемых из биологического материала экстракцией и сорбцией. (подгруппа «Лекарственные средства») Номенклатура и классификация.
- •Теоретические основы метода изолирования
- •Факторы, влияющие на эффективность изолирования «нелетучих» ядов из биоматериала.
- •Общие и частные методы изолирования
- •Изолирование этанолом, подкисленным щавелевой кислотой (метод Стаса-Отто)
- •Выход 20-30%
- •3 Раза
- •(Основания алкалоидов)
- •Изолирование водой, подкисленной щавелевой кислотой (метод Васильевой)
- •3 Раза
- •(Молекулярные формы кислот,
- •Выход 30-40%
- •(Основания алкалоидов)
- •Частные методы изолирования :
- •(Кислотные формы барбитуратов)
- •2 Раза по 2 часа
- •(Основания алкалоидов)
- •Выход 50-70%
- •(Вещества кислого и нейтрального характера)
- •(Вещества основного характера)
- •Очистка изолируемых веществ от сопутствующих компонентов биоматериала.
- •Аналитический скрининг лекарственных веществ, имеющих токсикологическое значение.
- •Хроматографические скрининговые методы
- •Тонкослойная хроматография (тсх)
- •Газожидкостная хроматография (гжх)
- •Высокоэффективная жидкостная хроматография (вэжх)
- •Спектральные скрининговые методы
- •Абсорбционная спектроскопия
- •Иммунохимические методы в скрининге лекарственных веществ. Иммунохимический анализ (иха)
- •Производные барбитуровой кислоты в химико-токсикологическом отношении
- •Лактим-лактамная таутомерия барбитуратов.
- •Токсикокинетика барбитуратов (всасывание, распределение, метаболизм, выделение)
- •Токсикодинамика (развитие отравлений).
- •Алкалоиды в химико-токсикологическом отношении
- •Токсикологическое значение алкалоидов
- •3. Идентификация выделенных алкалоидов.
- •Экспресс - анализ интоксикаций
- •Экспресс-метод определения лекарственных веществ на основе хроматографического скрининга (хтс)
- •Группа веществ, изолируемых экстракцией неполярными растворителями. Пестициды
- •Пестициды как химические загрязнители
- •Питания
- •Токсикологическая характеристика и судебно-химическое значение пестицидов
- •3. Классификация пестицидов
- •II. Органические пестициды
- •Классификация по назначению (по объектам применения):
- •Классификация в зависимости от путей проникновения в организм насекомых: - Контактные – убивающие насекомых при соприкосновении с любой частью тела
- •Классификация гербицидов в зависимости от характера действия:
- •Контактного действия – действуют только на те участки растений, куда попали (органические соединения ртути, цианиды, кислота серная, медный купорос).
- •Классификация по формам применения пестицидов:
- •4. Изолирование и очистка
- •5.Анализ пестицидов
- •6.Основные группы пестицидов
- •Метод газожидкостной хроматографии (гжх) в анализе фоп
- •Группа веществ, изолируемых минерализацией («металлические яды») Общая характеристика группы
- •Металлические загрязнения
- •Марганец
- •Методы минерализации
- •Методика изолирования металлических ядов из биологического материала общим методом минерализации
- •Дробный метод анализа «металлических ядов»
- •Маскировка ионов в дробном анализе
- •Применение органических реагентов в дробном анализе
- •Применение диэтилдитиокарбаминовой кислоты и её солей
- •Свойства ддтк металлов
- •Применение дитизона
- •Свойства дитизонатов
- •Методы количественного определения
- •Группа токсикологически важных веществ, изолируемых экстракцией водой (минеральные кислоты, щёлочи и их соли)
- •Группа токсикологически важных веществ, требующих особых методов изолирования (соединения фтора)
- •Группа веществ, не требующих особых методов изолирования. Вредные пары и газы. Оксид углерода (II)
- •Литература
4. Изолирование и очистка
Изолирование пестицидов, в большинстве случаев, осуществляют экстракцией различными органическими растворителями: пентан, гептан, петролейный эфир, хлороформ, четыреххлористый углерод и др. В некоторых случаях используют полярные растворители, например, для изолирования производных арилоксикарбоновых кислот. Также возможна перегонка с водяным паром (ртутьорганические соединения, никотин, анабазин).
Единого универсального метода изолирования пестицидов, так же как и общей схемы очистки полученных экстрактов, не существует.
Рекомендуются методы изолирования пестицидов для каждого конкретного объекта исследования (воздух, пищевые продукты растительного происхождения, почва, кровь, моча и т.п.) и конкретного препарата.
Методы очистки пестицидов, выделенных из биологических объектов, также разнообразны. Имеет место очистка перегонкой с водяным паром, экстракцией, кристаллизацией, хроматография в тонких слоях сорбента.
5.Анализ пестицидов
Качественный анализ и количественное определение пестицидов проводятся по нативному веществу, либо по метаболитам, которые обнаруживают, используя хроматографические и биохимические методы анализа. При рассмотрении отдельных групп и представителей пестицидных препаратов будут приведены подходы к проведению химико-токсикологического анализа.
6.Основные группы пестицидов
Хлорорганические пестициды (ХОП) применяют в сельском хозяйстве в качестве активных инсектицидов, акарицидов и фумигантов в борьбе с вредителями зерновых и технических культур. По химической природе пестициды этого класса представляют собой хлорпроизводные ароматических углеводородов, циклопарафинов, терпенов. К ним относятся гексахлорбензол, гексахлорбутадиен, -изомер ГХЦГ, ДДТ, ДДД, дилор, кельтан, метоксихлор и др. Они могут длительно (до 1,5 - 10 лет и более) сохраняться в почве, воздействовать на почвенную фауну и переходить в произрастающие растения. Из-за высокой устойчивости в окружающей среде и способности к биоконцентрации ХОП превратились в глобальные загрязнители. Им присущи сверх- и выраженная кумуляция. Большинство ХОП плохо растворимы в воде, но хорошо - в органических растворителях, в том числе - жирах.
Изолирование ХОП основано на экстракции пестицида из измельченного объекта органическим растворителем (н-гексан), для ГХЦГ возможна перегонка с водяным паром. Качественный и количественный анализ сводится, в большинстве случаев, к отщеплению одного или нескольких атомов хлора и последующему обнаружению хлоридов и ароматического ядра методами ТСХ и ГЖХ с электронно-захватным детектором (ДЭЗ).
Метаболизм хлорированных ароматических углеводородов - гексахлор-бензола, ДДТ и его аналогов во внешней среде и различных биологических средах протекает по восстановительному и дегидрохлорированному механизмам. Общепризнан ряд возможных путей метаболизма ДДТ в живых тканях: окисление до ДДА (дихлордифенилуксусная кислота); дегидрохлорирование до ДДЭ (2,4-дихлорэтилен); восстановительное дехлорирование до ДДД (4,4-дихлордифенилдихлорметилметан).
ДДД - активный контактный инсектицид, лишь несколько уступающий ДДТ по токсичности. Для теплокровных особенно опасна его высокая хроническая токсичность.
Реакция дегидрохлорирования свойственна также и другой группе ХОП, например, продуктам хлорирования циклопарафинов, к которым относится гексахлорциклогексан (ГХЦГ). Под влиянием микроорганизмов ГХЦГ превращается в пентахлорциклогексан, переходящий затем в трихлорбензол, который, в свою очередь, взаимодействует с сульфгидрильными группами аминокислот.
ХОП обладают эмбриотоксическим действием, вызывают пороки развития и мутагенные изменения. Некоторые являются канцерогенами и аллергенами, что явилось основанием для ограничения, либо запрещения их применения в отдельных регионах России.
Пестициды из класса фенолов
Фенолы проявляют широкий диапазон физиологического действия и являются фунгицидами, бактерицидами, инсектицидами и гербицидами. Причем пестицидная активность фенолов возрастает при введении в ароматический радикал различных заместителей, особенно нитрогруппы. Из многочисленных производных динитропроизводных фенолов практическое значение приобрели ДИНОК и ДИНОСЕБ.
По физическим свойствам оба препарата представляют собой желтые кристаллические вещества. Изолирование при ХТА из внутренних органов трупа, крови, мочи возможно как подщелоченной, так и подкисленной водой, очистка – хроматографией в тонком слое силикагеля. Качественное обнаружение проводят по реакции с раствором натрия гидроксида – появляется желтое окрашивание, либо с использованием других реакций, характерных для фенолов. Количественное определение проводят СФМ методом, максимум поглощения наблюдается при 370 нм.
Производные карбаминовых кислот - карбаминаты (эфиры карбаминовой кислоты). Наиболее широкое применение нашел севин. Изолирование при ХТА из внутренних органов трупа производится повторной экстракцией бензолом. Качественное обнаружение основывается на предварительном гидролизе севина до α-нафтола и последующем его доказательстве следующими реакциями:
1. С купробромидом натрия после нагревания появляется фиолетовое окрашивание.
2. С 4-аминоантипирином – оранжево-красное окрашивание.
3. С 0,5% раствором NaNO2 в кислоте серной разбавленной появляется желтое окрашивание, переходящее в оранжевое при создании щелочной среды.
Количественное определение севина проводят ФЭК методом после его щелочного гидролиза до α-нафтола и последующем вовлечении последнего в реакцию с купробромидом натрия.
Фосфорорганические пестициды (ФОП). Одна из наиболее распространенных и многочисленных групп пестицидов. К ним относятся афуган, актеллик, дибром, карбофос, бромофос, фталофос, хлорофос, цидиал и др. Большинство ФОП обладают высокой летучестью, слаборастворимы в воде, хорошо – в органических растворителях. По стойкости в окружающей среде значительно уступают ХОП. Однако некоторые из них сохраняют свои токсические свойства в почве и на растениях в течение нескольких месяцев и более, в результате чего возможно их поступление в организм человека с продуктами питания, воздухом и водой. Способны проникать через неповрежденную кожу, различные биологические мембраны и гематоэнцефалический барьер. Установлено, что в течение 11 недель 30% немакура, внесенного в почву, поглощается растениями. Более устойчивы остаточные количества ФОП в плодах цитрусовых. Это объясняется их растворением в маслах кожуры плодов.
Хотя ФОП не накапливаются в организме ток интенсивно, как ХОП, они все же обладают кумулятивными свойствами в результате суммирования токсических эффектов - функциональной кумуляцией.
В клинической практике наиболее часто встречаются острые отравления карбофосом, хлорофосом, метафосом. Летальная доза для человека при приеме per os составляет для метафоса 0,2-2 г, для карбофоса, хлорофоса – 5-10 г.
Токсическое действие ФОП связано с угнетением активности холинэстеразы (ХЭ). При взаимодействии ХЭ с ФОП образуется устойчивый к гидролизу, либо не способный к нему (в случае воздействия, например, зорина) фосфорилированный фермент, не способный регулировать процессы разложения ацетилхолина в синапсах. В результате накопления ацетилхолина наблюдаются характерные изменения в ЦНС и вегетативной нервной системе, проявляющиеся головной болью, ухудшением памяти, нарушением сна, дезориентацией в пространстве, бронхоспазмами, судорогами, угнетением дыхания. Для некоторых характерны невриты, парезы, параличи.
В организме метаболизм ФОП протекает по пути окисления (с потерей радикалов), десульфирования и дехлорирования. При этом могут образовываться более токсичные соединения.
К осложнениям, развивающимся при тяжелых отравлениях ФОП, относятся пневмонии, поздние интоксикационные психозы и полиневрозы, возникающие через несколько дней с момента отравления.
Достоверно установлены генетические нарушения (повышение эмбриональной смертности и врожденных аномалий у потомства) у лиц, перенесших острые отравления ФОП, и у рабочих промышленных предприятий, подвергающихся хроническому воздействию низких концентраций этих веществ.
Химико-токсикологический анализ ФОП имеет чрезвычайно важное значение для доказательства ФОП, т.к. они, в большинстве случаев, не вызывают каких-либо специфических морфологических изменений в организме человека.
ХТА представляет большую сложность ввиду большого ассортимента ФОП, быстрого метаболизма в организме и образования новых продуктов, а также при изолировании и обнаружении.
Изолирование
Объектами исследования при ХТА могут быть как сами ядохимикаты, так и биологические объекты – желудок с содержимым, печень, почки в смертельных случаях отравления и биологические жидкости – кровь, моча – у живых лиц при установлении диагноза острого отравления, а при санитарно-гигиенических исследованиях – пищевые продукты, почва, вода.
Изолирование из внутренних органов трупа основано на настаивании измельченных органов с 3-х кратным объемом смеси: ацетон-этанол-вода (1,5:1,5:1) при рН 5-5,5 в течение 4 часов с последующим экстрагированием хлороформом.
Изолирование из биологических жидкостей проводят при рН 5 прямой экстракцией хлороформом с последующей концентрацией извлечения.
Обнаружение и определение
Тонкослойная хроматография в анализе ФОП – второй по значимости метод. По сравнению с методом ГЖХ он менее чувствителен и специфичен, не дает точной количественной оценки, но преимущество его в том, что он не требует специальной аппаратуры и, при необходимости, может быть использован в любой лаборатории.
Метод ТСХ используется для очистки и разделения ФОП, идентификации и ориентировочного количественного определения.
Для хроматографирования используют пластины «Silufol», либо стеклянные пластины с силикагелем, фиксированным гипсом. Хроматограммы развивают в одной из систем растворителей: 1. гексан-ацетон 4:1; 2. бензол.
Общая проба на ФОП
На пластину наносят 2 точки метчика с содержанием смеси ФОП 10 и 20 мкг (для ориентировочного количественного определения) и аликвоту извлечения. Хроматографируют в одной из систем, затем проявляют, последовательно обрабатывая пластину:
1. Парами брома – наблюдают буро-коричневые пятна (не специфична, дают соэкстрактивные вещества);
2.Спиртовым раствором железа (III) хлорида и кислоты сульфосалициловой
наблюдают пятна желтого или белого цвета (фосфат-ион).
При положительном результате общей пробы на ФОП устанавливают класс ФОП.
Определение класса ФОП
На три хроматографические пластины наносят аликвоты экстрактов, как в общей пробе. После хроматографирования пластины обрабатывают следующим образом: 1-ю пластину (на серусодержащие ФОП) с палладия хлоридом, наблюдают пятно желтого цвета, либо с серебра нитратом и бромфеноловым синим, при этом наблюдают пятно лилового цвета (после обесцвечивания фона кислотой лимонной).
2-ю пластину (на ФОП с нитрофенильным радикалом) опрыскивают спиртовым раствором едкого натрия. При наличии в пятне свободных нитрофенолов (метаболиты) – желтая окраска появляется сразу, в присутствии ФОП с нитрофенильным радикалом – желтая окраска появляется после нагревания.
3-ю пластину (на хлорофос и дихлофос) обрабатывают щелочным раствором резорцина, наблюдают пятна, окрашенные в розовый цвет.
Пятна, выявленные во всех случаях, сравнивают с пятнами метчика. При совпадении Rf искомого ФОП с Rf метчика выполняют подтверждающие реакции и проводят ориентировочное количественное определение по площади пятна. Содержание ФОП рассчитывают по формуле:
А S² где Х - содержание ФОП в объекте (мкг/кг)
Х = В S¹ А - содержание ФОП в стандарте (мкг)
В - навеска пробы в г с учетом аликвоты
S¹ - площадь пятна метчика (мм2)
S² - площадь пятна пробы (мм2)
При положительном результате общей пробы на ФОП определяют степень угнетения холинэстеразы крови.
Холинэстеразная проба(энзимное экспозиционно-колориметрическое определение) – основана на способности ФОП угнетать активность фермента холинэстеразы. При угнетении холинэстеразы нарушается регулирование разложения ацетинхолина, что приводит к его накоплению и непрерывному раздражению нервных клеток. Как следствие, нарушаются функции ЦНС и вегетативной НС. Это приводит к тяжелейшим расстройствам - судорогам, параличам, бронхоспазму, угнетению дыхания и сердечной деятельности.
+ холинэстераза +
(CH3)3-NCH2CH2OCOCH3 (CH3)3-NCH2CH2OH + HOCOCH3
ацетилхолин холин уксусная кислота
В норме ацетилхолин под влиянием фермента холинэстеразы разрушается с образованием холина и уксусной кислоты, в результате чего изменяется рН смеси ацетилхолин + холинэстераза.
Изменение рН можно зафиксировать с помощью кислотно-основных индикаторов, например, бромтимолового синего. Изменение окраски в контроле (от синей к желтой) происходит в течение 10-15 минут. В присутствии ФОП (как антихолинэстеразных веществ) окраска индикатора не изменяется более продолжительное время, чем в контроле.
Угнетение активности холинэстеразы рассчитывают в % по формуле:
100 Т где Т - время изменения окраски в контрольной пробе
Х = 100 - Т¹ Т¹ - время изменения окраски в исследуемой пробе
Угнетение активности холинэстеразы более чем на 10 %, указывает на возможное присутствие в пробе ФОП.
Экстрактивные вещества органов трупа, крови, мочи без глубокого гнилостного разложения не мешают определению. Продукты гниения могут снижать активность холинэстеразы на 10-50 %. В этом случае проводят предварительную очистку пробы на колонке с активированным углем.
Холинэстеразная проба неспецифична, используется как предварительный, ориентировочный тест, не имеющий отрицательного судебно-химического значения.