
- •Избранные лекции по токсикологической химии Учебное пособие для студентов очного
- •Содержание
- •Введение в токсикологическую химию
- •Особенности химико-токсикологического анализа.
- •Организационная структура судебно-медицинской и судебно-химической экспертизы в рф
- •Правовые и методологические основы судебно-химической экспертизы
- •Правила производства судебно-химической экспертизы вещественных доказательств в схо смл Бюро смэ органов здравоохранения
- •Помещения лаборатории
- •Порядок проведения судебно-химической экспертизы Основные правила судебно-химического анализа (сха)
- •Документация при производстве судебно-химической экспертизы
- •Яд. Общая характеристика токсического действия. Формирование токсического эффекта как фактор взаимодействия яда, организма и окружающей среды. Понятие «яд», «отравление»
- •Классификация отравлений
- •Общая характеристика и классификация веществ, вызывающих отравление
- •2. Токсические вещества неорганической природы:
- •Токсикокинетика чужеродных соединений
- •Всасывание чужеродных соединений
- •Факторы, влияющие на абсорбцию чужеродных соединений
- •Распределение. Факторы, влияющие на распределение чужеродных веществ в организме.
- •Метаболизм чужеродных соединений
- •2. Восстановление:
- •Группа веществ, изолируемых дистилляцией («летучие яды»)
- •5.Сложные эфиры алифатического ряда
- •Объекты судебно-химического исследования. Пробоподготовка
- •Одноатомные спирты Этиловый спирт в химико-токсикологическом отношении
- •Токсикологическое значение спиртов
- •Токсикокинетика спиртов
- •Объекты исследования и пробоподготовка
- •Правила отбора проб для исследования
- •Экспертиза алкогольного опьянения. Клиническая диагностика
- •Химические свойства спиртов. Методы анализа в судебно-химической экспертизе отравлений и экспертизе алкогольного опьянения.
- •Количественное определение спиртов
- •Теоретические предпосылки метода
- •Основные газохроматографические параметры
- •Относительное время удерживания является величиной более постоянной, так как на него меньше влияют условия проведения хроматографического процесса.
- •Аппаратурное оформление метода гжх
- •Определение этанола методом гжх
- •Оценка результатов количественного определения этанола в крови человека
- •Группа веществ, изолируемых из биологического материала экстракцией и сорбцией. (подгруппа «Лекарственные средства») Номенклатура и классификация.
- •Теоретические основы метода изолирования
- •Факторы, влияющие на эффективность изолирования «нелетучих» ядов из биоматериала.
- •Общие и частные методы изолирования
- •Изолирование этанолом, подкисленным щавелевой кислотой (метод Стаса-Отто)
- •Выход 20-30%
- •3 Раза
- •(Основания алкалоидов)
- •Изолирование водой, подкисленной щавелевой кислотой (метод Васильевой)
- •3 Раза
- •(Молекулярные формы кислот,
- •Выход 30-40%
- •(Основания алкалоидов)
- •Частные методы изолирования :
- •(Кислотные формы барбитуратов)
- •2 Раза по 2 часа
- •(Основания алкалоидов)
- •Выход 50-70%
- •(Вещества кислого и нейтрального характера)
- •(Вещества основного характера)
- •Очистка изолируемых веществ от сопутствующих компонентов биоматериала.
- •Аналитический скрининг лекарственных веществ, имеющих токсикологическое значение.
- •Хроматографические скрининговые методы
- •Тонкослойная хроматография (тсх)
- •Газожидкостная хроматография (гжх)
- •Высокоэффективная жидкостная хроматография (вэжх)
- •Спектральные скрининговые методы
- •Абсорбционная спектроскопия
- •Иммунохимические методы в скрининге лекарственных веществ. Иммунохимический анализ (иха)
- •Производные барбитуровой кислоты в химико-токсикологическом отношении
- •Лактим-лактамная таутомерия барбитуратов.
- •Токсикокинетика барбитуратов (всасывание, распределение, метаболизм, выделение)
- •Токсикодинамика (развитие отравлений).
- •Алкалоиды в химико-токсикологическом отношении
- •Токсикологическое значение алкалоидов
- •3. Идентификация выделенных алкалоидов.
- •Экспресс - анализ интоксикаций
- •Экспресс-метод определения лекарственных веществ на основе хроматографического скрининга (хтс)
- •Группа веществ, изолируемых экстракцией неполярными растворителями. Пестициды
- •Пестициды как химические загрязнители
- •Питания
- •Токсикологическая характеристика и судебно-химическое значение пестицидов
- •3. Классификация пестицидов
- •II. Органические пестициды
- •Классификация по назначению (по объектам применения):
- •Классификация в зависимости от путей проникновения в организм насекомых: - Контактные – убивающие насекомых при соприкосновении с любой частью тела
- •Классификация гербицидов в зависимости от характера действия:
- •Контактного действия – действуют только на те участки растений, куда попали (органические соединения ртути, цианиды, кислота серная, медный купорос).
- •Классификация по формам применения пестицидов:
- •4. Изолирование и очистка
- •5.Анализ пестицидов
- •6.Основные группы пестицидов
- •Метод газожидкостной хроматографии (гжх) в анализе фоп
- •Группа веществ, изолируемых минерализацией («металлические яды») Общая характеристика группы
- •Металлические загрязнения
- •Марганец
- •Методы минерализации
- •Методика изолирования металлических ядов из биологического материала общим методом минерализации
- •Дробный метод анализа «металлических ядов»
- •Маскировка ионов в дробном анализе
- •Применение органических реагентов в дробном анализе
- •Применение диэтилдитиокарбаминовой кислоты и её солей
- •Свойства ддтк металлов
- •Применение дитизона
- •Свойства дитизонатов
- •Методы количественного определения
- •Группа токсикологически важных веществ, изолируемых экстракцией водой (минеральные кислоты, щёлочи и их соли)
- •Группа токсикологически важных веществ, требующих особых методов изолирования (соединения фтора)
- •Группа веществ, не требующих особых методов изолирования. Вредные пары и газы. Оксид углерода (II)
- •Литература
2. Восстановление:
а) восстановление нитросоединений, азосоединений микросо- мальными ферментами;
б) микросомальное восстановительное галогенирование;
в) немикросомальное восстановление.
3. Гидролиз с участием микросомальных и немикросомальных ферментов.
4. Синтез (реакции конъюгирования):
а) образование конъюгатов с глюкуроновой кислотой,
б) образование сложных эфиров с серной и фосфорной кислотами;
в) метилирование;
г) ацетилирование;
д) пептидная конъюгация.
У большинства веществ метаболизм протекает в два этапа. На первом этапе идут несинтетические реакции (окисления, восстановления, гидролиза), на втором – реакции синтеза. Для того, чтобы вступить в реакции синтеза, вещество должно иметь в своей структуре соответствующие функциональные группы – NH2, -OH, -COOH и др. Если таких групп нет, то соединение может их получить с помощью одной из несинтетических реакций.
Образующиеся в результате синтеза конъюгаты (парные соединения), как правило, не обладают токсичностью и легко выводятся из организма почками с мочой. Однако, конъюгаты с белковыми молекулами могут выступать в роли антигенов и приводить к выработке антител на исходное вещество. В результате при повторном приёме возникают аллергические реакции, вплоть до анафилактического шока.
Факторы, влияющие на метаболизм чужеродных соединений
Генетические факторы и внутривидовые различия (возможны генетические де
фекты ферментов, их изучением занимается фармакогенетика).
Физиологические:
а) возраст и развитие ферментных систем;
б) половые различия;
в) гормональный фон;
г) беременность;
д) питание;
е) патологические состояния, заболевания;
ж) длительное применение лекарств.
Факторы окружающей среды:
а) стресс;
б) ионизирующая радиация;
в) стимулирование метаболизма чужеродными соединениями,
г) ингибирование метаболизма чужеродными соединениями.
Выделение чужеродных соединений
Чужеродные соединения и их метаболиты выделяются, главным образом, с мочой и желчью. Однако они могут выводиться и с выдыхаемым воздухом, слюной, слезами, молоком, потом, секрецией в желудок и другие разделы желудочно-кишечного тракта.
Выделение почками состоит из трёх различных процессов, а именно: клубочковой фильтрации, активного и пассивного канальцевого транспорта.
Фильтрация через клубочковую мембрану нефрона. В результате образуется ультрафильтрат плазмы крови, который содержит чужеродные вещества и их метаболиты приблизительно в той же концентрации, как в крови. Белок плазмы и комплексы «белок –соединение» в этом случае не фильтруются и остаются в крови. Таким образом, соединения, прочно связанные с белками, практически не выделяются с мочой.
Активное выделение ионизированных молекул клетками проксимальных канальцев. Соединения, выделяемые путём активного транспорта, высокоионизированы и могут выводится в канальцевую мочу против высоких концентрационных градиентов (органические кислоты и основания). При выведении лекарственного вещества преимущественно канальцевой секрецией величина его связывания с белками не играет существенной роли, т.к. канальцы секретируют не только свободные, но и связанные с белками соединения.
Выделяемые по механизму активного транспорта вещества конкурируют друг с другом, и скорость выделения одного изменяется при появлении другого. Этот феномен используется в фармакологической практике для замедления выделения лекарств и поддержания их концентрации в крови на терапевтическом уровне.
3.Пассивный канальцевый транспорт. Подобно другим биологическим мембранам канальцевый эпителий, в частности, в дистальных канальцах, ведёт себя как липопротеиновый барьер, пропуская липидорастворимые, неионизированные молекулы. Поэтому липидорастворимые соединения подвергаются обратному всасыванию (реабсорбции) в кровь посредством простой диффузии в дистальных канальцах нефрона. Соединения, плохо растворимые в жирах, реабсорбируются лишь частично (например, веронал). Более того, соединения, которые в моче ионизированы в большей степени, чем в плазме крови, имеют тенденцию к диффундированию через канальцевый эпителий из крови в клубочковый фильтрат. Величина рН мочи колеблется в норме между 4,8 и 7,5 (в среднем значение рН 5,8).
Когда канальцевая моча более щелочная, чем плазма, в мочу легко проникают слабые кислоты с рКа = 3-7,5 (барбитураты, салицилаты, сульфаниламиды) и, наоборот, если канальцевая моча более кислая, в неё переходят слабые основания с рКа = 7-11. При рН мочи равной рН плазмы (7,4) экскреция не будет зависеть от величины рКа.
Выделение с выдыхаемым воздухом. Многие летучие соединения, индекс липорастворимости которых мал, выделяются неизменёнными с выдыхаемым воздухом путём процесса, аналогичного перегонке с водяным паром. Бензол, фторбензол, хлорбензол выделяются по этому пути интенсивно, а бромбензол, нитробензол, анилин – менее интенсивно.
Как правило, с воздухом выделяется нативное вещество и его ближайшие метаболиты (например, этанол и ацетальдегид). Очень редки случаи, когда в процессе метаболизма из нелетучих соединений образуются летучие. Тогда выделение также идёт через лёгкие.
Выделение через желудочно-кишечный тракт играет значительно меньшую роль. Практическое значение этот путь имеет только для солей тяжёлых металлов и некоторых лекарственных и наркотических веществ (каннабиноиды на 65% выделяются с желчью, производное фенотиазина – тиоридазин – на 9%).
Выделение чужеродных соединений в незначительной степени происходит также путём пассивного транспорта неионизированных молекул в секреты различных желёз.
Нередко чужеродные вещества и их метаболиты выделяются сразу несколькими путями, например, этиловый спирт на 90% метаболизирует, и лишь 10% его выделяется в неизмененном виде, причём с выдыхаемым воздухом – 7%, 3% выделяется с мочой и в небольших количествах со слюной, потом и др.