Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Климанов Дозиметрическое планирование лучевой ч2 2008

.pdf
Скачиваний:
483
Добавлен:
16.08.2013
Размер:
10.62 Mб
Скачать

7.5. Смежные поля

Проблема стыковки полей возникает в тех случаях, когда необходимо облучить большую площадь, чем позволяют технические возможности конкретного ускорителя, или когда требуется облучить отдельный участок поля электронами с другой энергией. В некоторых ситуациях полезно применить стыковку электронного и фотонного полей. Во всех случаях целью стыковки является лучшее покрытие мишенного объема. Так как при облучении электронами мишени расположены на поверхности или близко к ней, то нельзя допускать разрывов между полями на облучаемой поверхности. Но в этом варианте ниже поверхности образуются горячие пятна, приемлемость которых по степени превышения дозы, их размеров и локализации требует отдельного анализа.

На рис. 1.35 показано результирующее дозовое распределение для двух смежных полей электронов с одинаковыми энергиями и параллельными осями при разных промежутках между полями на поверхности. Как видно из рисунка, при промежутке в 0,5 см возникает область высокой дозы (140 – 150 %). С увеличением промежутка величина высокой дозы уменьшается до более приемлемого уровня, однако вблизи поверхности создается район с низкой дозой. Параметры последнего могут оказаться неприемлемыми с клинической точки зрения.

На рис.1.36 показан эффект стыковки полей с разной энергией электронов. Значение дозы в области перекрытия полей заметно меньше, чем получилось для полей с одинаковой энергией электронов

(см. рис.1.35).

Параметры горячих и холодных пятен существенно зависят также от взаимной ориентации стыкуемых пучков. На рис.1.37 приводятся

три варианта

стыковочной конфигурации.

Минимальная

протяженность

и амплитуда области высокой дозы

получается в

геометрии, когда геометрические оси пучков ориентированы так, что внутренняя граница полей становится общей для обоих пучков (рис.1.37,а). Максимальные значения этих параметров образуются при пересечении геометрических осей пучков (рис1.37,c).

В тех случаях, когда электронное поле граничит на поверхности с фотонным полем, горячее пятно образуется на стороне фотонного поля, а холодное пятно, наоборот, на стороне электронного поля (рис.1.38). Причиной такого эффекта является утечка электронов вследствие

61

рассеяния из области электронного облучения в область фотонного облучения.

7.6. Электронная дуговая терапия

Электронная дуговая терапия (ЭДТ) или арк-терапия представляет собой особый радиотерапевтический метод облучения поверхностных (или близких к поверхности) опухолей, локализованных на кривых поверхностях, с помощью движущегося пучка электронов. Впервые она была описана в работе [54]. Несмотря на то ,что данная методика давно известна и клинически полезна при лечении некоторых опухолей (например, при облучении грудной стенки после хирургического удаления молочной железы), она не получила пока широкого распространения. Причина заключается в относительной сложности и недостаточной изученности физических особенностей метода ЭДТ.

Дозовое распределение сложным образом зависит от энергии электронов, ширины поля, глубины расположения изоцентра, расстояния источник-ось, кривизны поверхности тела пациента, и системы коллимации. Важнейшей особенностью глубинного дозового распределения ЭДТ является существенное уменьшение дозы вблизи кожной поверхности по сравнению со стационарным электронным пучком (см. раздел 7.6.2). Эта особенность связана с так называемым «эффектом скорости», смысл которого в том, что, чем глубже расположена расчетная точка, тем дольше она облучается пучком электронов. Поэтому, если требуется высокая поверхностная доза, то при проведении ЭДТ применяются дополнительные болюсы.

Хорошие клинические результаты, достигнутые рядом энтузиастов этого направления за последние два десятилетия, стимулировали повышение интереса к данному методу электронной терапии как для куративного, так и для паллиативного облучения. В настоящее время многие фирмы предлагают ускорители с возможностью реализации электронной дуговой терапии. Однако кроме такого ускорителя необходима определенная модификация электронных коллиматоров. Например, требуются апертурные коллиматоры, имеющие адекватный клиренс до пациента, и дополнительная коллимация в непосредственной близости от поверхности пациента, усиливающая спад дозы за пределом дуги. Подробное описание основных аспектов рассматриваемого метода дается в работе [55].

62

Рис. 1.36. Изодозовое распределение для двух смежных полей электронов с разной энергией (ускоритель Вариан 2100С, размер полей 10 х 10 см2, РИП=100 см) [19]

63

Рис.1.37. Пример различных вариантов взаимной ориентации геометрических осей пучков: (а) – геометрические оси пучков отклонены наружу так, что создается общая граница пучков; (b) – оси параллельны; (c) – оси пересекаются на глубине облучаемого объекта [4]

Рис. 1.38. Изодозовое распределение, создаваемое при стыковки электронного поля (9 МэВ) с фотонным полем (6 МВ). Размер обоих полей 10 ×10 см2, SSD=100 см [53]

64

Ускорители, не имеющие опции вращающегося электронного пучка, тем не менее могут применяться для так называемой «псевдодуговой» терапии. При этом методе поле определяется Х-пластинами фотонного коллиматора и электронной коллимацией непосредственно на поверхности пациента. Пучки направляются изоцентрически через одинаковые угловые интервалы. Поля перекрываются так, чтобы центр следующего поля ложился на край соседнего предыдущего поля. При достаточно большом количестве полей полученный результат является дискретной моделью непрерывного дугового поля.

7.6.1. Калибровка дугового пучка электронов

Калибровочные процедуры в ЭДТ имеют существенные отличия от калибровки стационарных пучков. Суммарная дуговая доза определяется двумя способами [20]: интегрированием профилей стационарных пучков; прямым измерением. Первый способ требует как знания дозового распределения, так и калибровки мощности дозы (в стандартных условиях) для поля, используемого в ЭДТ. Методика интегрирования иллюстрируется на рис.1.39. Из изоцентра через равные угловые интервалы (например, 10o) проводят радиусы. Вдоль каждого i радиуса помещают изодозовые карты для одиночного пучка и доза в точке P (Di(P)) определяется как доля от максимальной дозы на центральной оси пучка вдоль i направления (рис.1.39,б). Суммарная дуговая доза рассчитывается из следующего выражения, приводимого в работе [56]:

Darc (P) =

D&0

∆θ Di (P) Inv(i) ,

(1.29)

 

 

N

 

2πn i=1

где D&0 – мощность дозы в минуту для стационарного поля на глубине

zmax ; n – скорость вращения (число оборотов в минуту); Inv(i) – поправка закона обратных квадратов на воздушный зазор между пунктирным кругом и точкой входа пучка.

Прямые измерения суммарной дуговой дозы можно выполнить в цилиндрическом фантоме из тканеэквивалентного материала со специальными отверстиями для детекторов, которые располагаются на глубине zmax. Радиус фантома должен приближенно соответствовать радиусу кривизны поверхности пациента, глубина изоцентра должна равняться той, которая применяется при облучении.

65

Рис. 1.39. Интегрирование суммарной дуговой дозы в точке P. Сплошная линия представляет нерегулярный контур пациента, а пунктирная линия является круговой аппроксимацией контура

[56]

7.6.2. Полуэмпирический метод

Для планирования ЭДТ определенное распространение получил полуэмпирический метод, называемый «угловая β концепция» [28]. В этом методе вводится понятие характерного угла β для произвольной точки A, находящейся на облучаемой поверхности пациента (рис.1.40). Этот угол измеряется между центральными осями двух ротационных пучков электронов, расположенных относительно точки А так, что передний край одного пучка пересекается в точке А с задним краем другого пучка.

Угол β однозначно определяется тремя параметрами: расстоянием источник-ось вращения (f); глубиной изоцентра (di); шириной поля (w). Электронные пучки, имеющие при различных комбинациях этих параметров одинаковое значение угла β, создают близкое распределение глубинной процентной дозы даже при значительных отличиях в индивидуальных значениях di и w (рис.1.41). Таким образом, в этом методе глубинное дозовое распределение для ротационных пучков электронов зависит только от энергии электронов и значения характерного угла β. Отметим также, что уменьшение угла β

66

приводит к смещению на большие глубины положения максимума в дозовом распределении (см. рис.1.41).

Рис. 1.40. Схематическое представление геометрии ЭДТ: f – расстояние источник-ось вращения; di

– глубина изоцентра; α – дуговой угол или угол облучения; β – характерный угол для индивидуальной геометрии облучения [28]

Существенное значение в ЭДТ имеет фотонное загрязнение дозы, так как в изоцентре суммируется вклад от всех пучков, в то же время доза от электронов на глубине изоцентра может быть сильно ослабленной в отличие от фотонной дозы. Уменьшение угла β приводит к увеличению в изоцентре дозы от загрязняющих фотонов.

7.6.3. Форма поля

Одна из технических трудностей ЭДТ заключается в формировании с помощью вторичных коллиматоров оптимальной формы вращающегося электронного пучка. При облучении частей тела, которые приближенно аппроксимируются цилиндрической геометрией (например, грудная клетка), ширину поля можно устанавливать с помощью прямоугольных фотонных коллиматоров. Однако когда облучаемый объем допускает только сферическую аппроксимацию (например, череп), необходим индивидуальный вторичный коллиматор. Этот коллиматор должен создавать непрямоугольное поле, форма которого приводила бы к гомогенному дозовому распределению в объеме мишени.

67

Рис. 1.41. Глубинные процентные дозовые распределения для ЭДТ с энергией 9 МэВ, измеренные

в фантоме при различных комбинациях di и w, дающих одинаковое значение характеристического угла β: а) – 20о; б) – 40о; в) – 80о; г) – 100о[28]

Без вторичной коллимации на облучаемой поверхности пациента спад дозы на границе поля в ЭДТ является относительно медленным. Для увеличения дозового градиента на границе дуги применяют свинцовые ленты, располагая их на границе области облучения, а саму дугу, расширяют примерно на 15о далее каждого края дугового облучения. Эффект такого технического приема демонстрируется на рис.1.42.

68

Рис. 1.42. Изодозовые распределения, иллюстрирующие различие в скорости спада дозы на краях электронной дуги, когда применяются или не применяются свинцовые ленты [57]

7.7. Тотальное облучение кожи электронами

Полное облучение кожи электронами (ТОКЭ) применяется при некоторых видах поверхностных онкологических заболеваний, распространяющихся на большие площади кожи, например при фунгоидной гранулеме [58]. Энергия электронных пучков,

69

используемых для этого вида лучевой терапии, находится в интервале от 2 до 9 МэВ. В научной литературе описано довольно большое количество различных методик, позволяющих проводить ТОКЭ. Достаточно детальное изложение основных технических приемов, применяемых для ТОКЭ, дается в работе [59]. Основной целью во всех методиках является достижение однородного дозового распределения по всей поверхности кожи. Практически все подходы к решению этой сложной задачи можно разделить на две категории: а) метод перемещения, при которой пациент, лежащий на спине, перемещается относительно пучка электронов достаточной ширины, чтобы перекрыть поперечные размеры пациента; б) метод большого поля, при которой стоящий пациент облучается комбинацией пучков больших размеров с расстояния от 2 до 6 м.

Впервом случае пациент облучается вдоль всей длины с переднего

изаднего направлений, а дозовая однородность в поперечном направлении достигается дополнительной комбинацией перекрывающихся боковых полей.

Электронные поля больших размеров, требуемые для ТОКЭ, создаются за счет рассеяния электронов на большие углы и большие РИП. Пучки электронов низких энергий сильно расширяются при прохождении через воздух. Так, например, узкий пучок 6 МэВ после прохождения 4 м воздуха получает гауссовское распределение в поперечном направлении с шириной на половине высоты, равной 1м. Если два таких поля состыковать вертикально вдоль линии 50 %-ной дозы, то результирующее дозовое распределение будет однородно по высоте примерно 1 м. Таким образом, подходящая комбинация подобных полей способна покрыть пациента с головы до ног (рис. 1.43). Размеры и форму электронного пучка, формирующиеся в результате рассеяния электронов в воздухе, можно оценить на основе теории многократного рассеяния. Такой подход был реализован в работе [60].

Для получения большей однородности поля в некоторых методиках

не ограничиваются только рассеянием электронов в воздухе и применяют дополнительные рассеивающие фольги внутри и снаружи коллиматора, а также используют специальные рассеивающие экраны из пластика (рис.1.44).

70

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]