Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Климанов Дозиметрическое планирование лучевой ч2 2008

.pdf
Скачиваний:
483
Добавлен:
16.08.2013
Размер:
10.62 Mб
Скачать

Рис. 1.19. Глубинное дозовое распределение в воде и в гетерогенном фантоме вода-пробка. Величину CET можно здесь определить из отношения CET=X1/X2 [20]

Рис. 1.20. Примеры изодозовых кривых при облучении грудной клетки и легких с использованием болюса: А – расчет без учета меньшей плотности легких (по сравнению с мягкой тканью); Б – расчет с использованием плотности легких ρ=0.25 г/см3

5.3. Кость

Негомогенности в виде кости часто присутствуют в электронных полях облучения. Плотность костей изменяется от 1,0 до 1,1 г/см3 для губчатой кости грудины и от 1,5 до 1,8 г/см3 для твердых (плотных) костей таких, как кости челюсти, черепа и другие кости, обеспечивающие структурную поддержку тела. Кроме того, плотность

41

может меняться в пределах конкретной кости. Электронная плотность для губчатой кости не сильно отличается от таковой для воды, поэтому для нее величину CET можно принять равным единице. Экспериментальные исследования (in vivo) с такой твердой костью, как челюсть, показали, что в этом случае метод CET дает хорошие результаты. Однако в общем случае ситуация сложнее.

На рис.1.21 иллюстрируется влияние твердой кости на изодозовые кривые. Под костью изодозовые кривые сдвинуты вперед к кости ввиду защитного эффекта кости (большее поглощение излучения по сравнению с тканью). В то же время доза снаружи и вблизи края границы раздела увеличена на ~ 5 %, т.е. приблизительно на такую же величину. Данный эффект обусловлен потерей поперечного электронного равновесия. Необходимо отметить, что реальные границы раздела ткань-кость в теле человека более закругленные, чем на рис.1.21, что приводит к меньшим отклонениям от распределений в гомогенной ткани, чем показано на рис.1.20. Однако при уменьшении энергии электров отклонения, наоборот, возрастают.

Рис. 1.21. Влияние твердой кости на изодозовое распределение для 17 МэВ пучка электронов при размере поля 10 х10 см2 и РИП=100 см: —— – с учетом кости; – – – без учета кости [37]

5.4. Небольшие негомогенности

Небольшими считают негомогенности, поперечные размеры которых существенно меньше размеров поля. С точки зрения корректного расчета доз они представляют более сложную проблему, чем негомогенности в виде слоев. Частично это было продемонстрировано на рис.1.21.

Приближенную методику расчета поправочных факторов для небольших негомогенностей предложили авторы работы [38]. Дозовое

42

распределение для широкого пучка представляется в виде суперпозиции распределения от небольшого пучка, размеры которого равны поперечному сечению негомогенности, и распределения от «пустотелого» пучка (исходный пучок минус небольшой пучок), падающего на гомогенный водный фантом. Значение дозы Di(z) в точке в негомогенной среде определяется из дозы Dw(z) в той же точке в

воде за вычетом дозы Dw' (z), которая была бы создана небольшим

пучком AH

(рис.1.22) в воде, и плюс доза D' (z), которая была бы

 

i

создана тем же пучком, при прохождении его через негомогенность:

Di (z) = Dw (z) Dw' (z) + Di' (z)

(1.23)

Значение дозы Di' (z) определяется по методу CET, и окончательное выражение для расчета Di(z) равно:

D

(z) = D

w

(z) D'

(z) + D'

(z)[z t(1CET )]×

i

 

 

 

w

 

w

 

SSDeff + z t(1CET ) 2

(1.24)

×

 

 

 

 

 

 

 

 

(SSD

 

+ z)

2

 

 

eff

 

 

 

 

 

 

 

 

 

 

 

Этот метод дает неплохие результаты при расчете доз за негомогенностью и внутри нее. К сожалению, в литературе недостаточно данных для небольших пучков, особенно по значениям CET. Если средний атомный номер Z негомогенности близок к таковому для воды, а плотность ρi, то в первом приближении доза при

размере поля xi × xi , равна дозе в воде для следующего размера поля:

xi ρi

 

xi ρi

.

(1.25)

 

 

ρ

ρw

 

Еще более сложную проблему представляет корректное определение дозовых распределений вблизи края ногомогенности из-за рассеяния электронов на краях негомогенности. В работе [20] предложено качественное объяснение особенностей подобных распределений.

43

Рис. 1.22. Схематическое представление геометрии пучка в виде суперпозиции двух пучков [38]. H и I указывают на гомогенный материал и негомогенность в виде параллепипеда соответственно. Плотность I меньше чем H, поэтому изодоза парциального пучка A для негомогенной геометрии AI сдвинута здесь ниже изодозы для гомогенной геометрии AH

На рис.1.23 схематически иллюстрируется этот краевой эффект. Для простоты предполагается, что путь электрона в среде M представляет прямую линию. Если материал M’ имеет более высокую массовую мощность рассеяния, то электроны будут в нем рассеиваться в среднем на большие углы, чем в основном материале M. Это приводит к уменьшению электронного флюенса и, следовательно, дозы за негомогенностью. Рассеянные электроны, с другой стороны, увеличивают дозу в среде M. Таким образом, небольшие негомогенности создают холодные и горячие «пятна» (области) позади своих краев.

Систематическое изучение подобного краевого эффекта для негомогенностей из разных материалов было выполнено в работе [39]. Предложенный авторами метод может использоваться для приближенной оценки максимального увеличения и уменьшения дозы, которые вызываются краевым эффектом. На рис.1.23 показаны углы α и β, определяющие границы соответствующих областей дозового возмущения. Величина α дает положение максимального уменьшения и увеличения дозы, а величина угла β отделяет область, где краевым эффектом можно пренебречь. Значения этих углов, в основном,

связаны со средней энергией электронов E на крае негомогенности

(рис.1.24).

44

Рис. 1.23. а) – Схематическая иллюстрация рассеяния электронов за краями между материалами M и М, мощность рассеяния для М' больше, чем для М; б) – Изодозовое распределение в воде за краем тонкого слоя свинца, угол α определяет область максимальное изменение дозы, угол β угол определяет область незначительного изменения дозы

Рис. 1.24. Зависимость углов α и β от средней энергии электронов на крае негомогенности в воде (или мягкой ткани) [39]

45

Дозовое распределение под негомогенностью, но в зоне снаружи угла β можно рассчитывать по методу CET. Минимальное и максимальное значения дозы вдоль границы угла α в соответствии с рекомендацией авторов [39] определяется с помощью поправочного коэффициента СFmax по формуле:

CF

=

Dm D0

,

(1.26)

 

max

D0

 

 

 

 

 

 

где: Dm – максимальная или минимальная дозы; D0 – доза в той же точке в гомогенном водном фантоме. Зависимость коэффициента СFmax от средней энергии для некоторых материалов показано на рис.1.25.

Рис. 1.25. Зависимость коэффициента СFmax от средней энергии электронов на крае негомогенности в воде [39]

Все рассмотренные в этом разделе методы являются в той или иной степени приближенными. В некоторых случаях, особенно при наложении эффектов от нескольких небольших негомогенностей, они могут привести к значимым погрешностям. Для более точного решения проблемы необходимо переходить к строгим методам теории переноса, как например, метод Монте-Карло.

46

5.5.Воздушные полости

Втеле человека достаточно много воздушных полостей. Из-за малой плотности воздуха (0,0013 г/см3) электроны легко проходят через такие области. Однако при этом из-за сложной ситуации с особенностями рассеяния электронов вблизи границ раздела между воздушными полостями и соприкасающимися тканями возникают серьезные проблемы для корректного расчета доз. Вокруг небольших воздушных полостей могут возникнуть небольшие области с повышенными (горячие пятна) и с пониженными (холодные пятна) значениями дозы (рис.1.26). Они обусловлены потерей электронного равновесия вблизи краев негомогенности. Особенно заметными эти эффекты становятся, когда пучок падает по касательной к поверхности негомогенности

(рис.1.26).

Рис. 1.26. Изодозовое распределение, создаваемое пучком электронов в негомогенной композиции. H и I указывают на гомогенный материал и негомогенность в виде параллепипеда из воздуха соответственно [40]

К каким серьезным изменениям в дозовых распределениях приводят воздушные полости демонстрируется на рис.1.27. На рисунке показано дозовое распределение, создаваемое в области носа при облучении передним полем электронов. Расчет выполнен без учета (а) и с учетом

47

(b) воздушных полостей внутри носа. Сравнение распределений хорошо иллюстрирует важность учета подобных негомогенностей. Из рис.1.27 видно, что наличие воздушных полостей приводит к образованию в мозге и прилегающих к полости носа областей с высокой мощностью дозы.

Рис. 1.27. Изодозовые распределения, создаваемые передним пучком электронов в области носа без учета (а) и с учетом (b) негомогенностей[41]

Точный расчет доз вокруг небольших воздушных полостей возможен только с помощью метода Монте-Карло. При проведении приближенных расчетов будут полезны результаты экспериментального изучения поправочных факторов для небольших воздушных полостей, выполненного в работах [42,43].

6. Нерегулярные поверхности

Под нерегулярными (неправильными) поверхностями понимаются все не плоские поверхности. Они встречаются достаточно часто при облучении электронными пучками областей тела с сильной кривизной поверхности. В этом случае плоскость конца электронного тубуса не будет параллельна облучаемой поверхности (рис.1.28).

48

Рис. 1.28. Схематическая иллюстрация облучения нерегулярной поверхности (грудной клетки) пучком электронов. Справа показана стандартная геометрия нормального падения на плоскую поверхность без воздушного зазора [20]

Рассматриваемая геометрия, с одной стороны, приводит в результате к появлению неравномерного воздушного зазора между концом тубуса и поверхностью кожи. С другой стороны, появляется необходимость учета косого падения пучка. Учет обоих факторов можно выполнить, применяя корректирующий множитель к каждой точке дозового распределения, измеренного в стандартной геометрии водного фантома. Расчетное выражение в этом случае имеет следующий вид:

 

 

 

SSDeff + z

 

2

D(SSDeff

+ g, z) = D0

(SSDeff , z)

 

 

OF (θ, z), (1.27)

 

 

 

SSDeff + g + z

 

 

 

 

 

 

 

где g – воздушный зазор (рис.1.28), который измеряется для расчетной точки вдоль веерной линии, соединяющей виртуальный источник и расчетную точку; D0 – доза на глубине z при нормальном падении пучка на плоскую поверхность; OF – поправочный фактор на косое падение пучка (см. раздел 3.6).

Ввиде примера на рис.1.29 проводится сравнение

экспериментальных и расчетных изодозовых

распределений

в

цилиндрическом фантоме из полистирола в

геометрии подобной

рис.1.28. При расчете широкий пучок электронов разбивался на отдельные тонкие лучи, дозовое распределение каждого из которых

49

корректировалось в соответствии с формулой (1.27). Совпадение результатов вполне удовлетворительное за исключением 95 % изолинии.

Рис. 1.29. Сравнение экспериментальных и расчетных изодозовых распределений для пучка 12 МэВ электронов в полистереновом цилиндрическом фантоме при размере поля 10 ×10 см2. Оба распределения нормированы на Dmax в стандартной геометрии водного фантома (рис. 1.28) [20]

Сложную задачу для расчета доз из-за рассеяния электронов представляют резкие нерегулярности облучаемой поверхности. Примером таких поверхностей служат области носа, уха, глаза, а также хирургические иссечения. В этих зонах обычно вследствие нарушения электронного равновесия создаются горячие пятна в удаленной части области и холодные пятна вблизи поверхности. При сильных изломах поверхности с образованием резких впадин и выступов электроны рассеиваются преимущественно наружу из резких выпуклостей и, наоборот, внутрь резких впадин (рис.1.30). На практике такие резкие края обычно сглаживаются с помощью различных болюсов.

50

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]