Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Климанов Дозиметрическое планирование лучевой ч2 2008

.pdf
Скачиваний:
483
Добавлен:
16.08.2013
Размер:
10.62 Mб
Скачать

Таблица 1.2.

Глубина в водном фантоме, на которой находятся Dmax и D90 , для пучков разных энергий ускорителя Varian Clinac 2300CD при размере тубуса 10 х 10 см2 и РИП=100см

Энергия, МэВ

6.0

9.0

12

15

18

22

 

 

 

 

 

 

 

Глубина Dmax , см

1,4

2,2

2,9

2,9

2,9

2,2

Глубина D90 , см

1,8

2,8

3,9

4,8

5,4

5,8

Наиболее полезным терапевтическим интервалом глубин является область, где создается не менее 90 % от максимальной дозы Dmax. Эта глубина, z90 , в сантиметрах приблизительно равна наиболее вероятной энергии электронов вблизи облучаемой поверхности в МэВ, деленной на четыре. Глубины расположения Dmax и D90 не являются линейными функциями энергии и показывают существенные вариации для разных конструкций ускорителей (рис.1.6). Поэтому подчеркнем необходимость при планировании электронного облучения использовать экспериментальные данные для конкретного аппарата, конкретной энергии и конкретного аппликатора.

Выбор энергии пучка является существенно более критичным для электронов, чем для фотонов. Так как доза за точкой z90 быстро уменьшается, следует соблюдать осторожность при выборе терапевтической глубины и, следовательно, энергии электронов. При появлении сомнения лучше руководствоваться принципом выбора более высокой энергии, чтобы гарантировать нахождение мишенного объема внутри требуемой изодозовой поверхности. С другой стороны, прежде, чем использовать более высокую энергию, следует проверить, не произойдет ли чрезмерное облучение критических органов из-за увеличения z90 .

21

Рис. 1.6. Зависимость расположения глубины z90 от наиболее вероятной энергии пучка электронов

Ep,0 для ускорителей Philips SL75/20 (—) и Varian Clinac 2500 (– –) [15]

3.1.3. Зависимость центрально-осевого процентного дозового распределения от размера поля и РИП

ЦОПДР также как и выходной фактор существенно зависят от размера поля. Под выходным фактором понимается отношение мощности дозы, измеренной в воздухе на оси пучка для данного размера поля, к мощности дозы, измеренной в той же точке для ссылочного (опорного или рефересного) размера поля. Доза увеличивается с увеличением размера поля, так как увеличивается рассеяние в головке аппарата и в фантоме. Однако если размеры поля регулируются с помощью набора аппликаторов (тубусов), триммерных полос или вставок в аппликаторы при неизменном положении фотонных коллимационных пластин (шторок основного коллиматора), то изменение выходного фактора (см. ниже раздел 3.7) остается относительно небольшим (рис.1.7). Если же для этого используются шторки основного коллиматора головки, изменение выходного фактора будет значительным, особенно для низких энергий электронов (рис. 1.8).

Влияние размера поля на ЦОПДР иллюстрируется на рис. 1.9. Из представленных данных видно, что если размер поля становится меньше практического пробега, то появляется заметный cдвиг в

22

положении Dmax и D90 вперед к облучаемой поверхности при уменьшении размера поля. Величина этого сдвига растет с увеличением энергии пучка.

Рис. 1.7. Зависимость выходного фактора от размера квадратного поля при регулировании размера поля только с помощью триммеров для ускорителя Therac 20 [16]

Рис. 1.8. Относительное изменение дозы в точке zmax для тубуса 10 х 10 см2 при перемещении основных коллимационных шторок головки ускорителя Clinac-18 относительно рекомендованного положения [17]

23

Рис. 1.9. Влияние размера поля на ЦОПДР для пучков электронов ускорителя Mevatron 80 c энергией 7 МэВ (а) и 18 МэВ (б) при РИП=100 см [18]

В то же время форма ЦОПДР слабо зависит от расстояния источникповерхность. На рис.1.10 приводятся данные для РИП=100 см и РИП=115 см. Из рисунка видно, что при энергии электронов 20 МэВ 80-95 % участки кривой для РИП=115 см находятся только на несколько миллиметров ниже, чем аналогичные участки для РИП=100 см , а при меньших дозах эти кривые практически сливаются. Объясняется такой эффект относительно короткими пробегами электронов, вследствие чего влияние закона обратных квадратов на форму ЦОПДР невелико.

3.2. Равномерность и симметрия поля – внеосевые характеристики

Типичный дозовый профиль показан на рис.1.11. Он представляет собой зависимость поглощенной дозы от расстояния до оси пучка на определенной глубине водного фантома. Вариация в дозовом распределении в направлении перпендикулярном геометрической оси пучка можно описать как вне осевое отношение, понимая под этим отношение дозы в произвольной точке вне оси к дозе на оси на той же глубине водного фантома.

24

Рис. 1.10. Сравнение ЦОПДР для 9 МэВ и 20 МэВ пучков электронов ускорителя Varian 2100C

при РИП=100 и 115 см [19]

Рис. 1.11. Дозовый профиль 20 МэВ пучка электронов ускорителя Varian 2100C [19]

25

Спецификация по равномерности (или флатности) электронных пучков определяется в настоящее время согласно рекомендациям МЕК (Международная электротехническая комиссия) на глубине максимальной дозы, zmax, и включает два требования: 1) – расстояние между уровнями 90% дозы и геометрическим краем пучка не должно превышать 10 мм вдоль большей оси и 20 мм вдоль диагонали пучка; 2) – максимальная величина поглощенной дозы в любой точке внутри 90 % изодозового контура (см. далее) не должна отличатьсяболее, чем на 5 % от дозы на той же глубине на оси пучка.

Ранее МКРЕ [4] рекомендовала определять равномерность с помощью «индекса однородности». Этот индекс определяется в ссылочной (опорной) плоскости на ссылочной (опорной) глубине как отношение площади, где доза превышает 90 % дозы на оси пучка, к площади поперечного сечения пучка на поверхности фантома (рис.1.12). Этот индекс должен превышать заданное значение, например, 0.8 для поля 10 х 10 см2 на глубине zmax [20].

Рис. 1.12. К определению индекса однородности: изодозовые кривые в плоскости перпендикулярной центральной оси на глубине zmax [22]

Свои рекомендации относительно равномерности электронных пучков выработала также ААМФ [21]. В соответствии с ними гладкость определяется в ссылочной плоскости, перпендикулярной центральной оси пучка на глубине 95 % дозы за точкой zmax. Изменение дозы в пределах площади, ограниченной линией, отстоящей на 2 см внутрь от

26

геометрического края поля размером не меньше, чем 10× ×10 см2, не должна превышать ± 5 % относительно дозы на центральной оси.

С помощью понятия «симметрия пучка» сравниваются дозовые профили по разные стороны от центральной оси пучка. Спецификация по симметрии электронных пучков согласно рекомендациям МЕК определяется также на глубине максимальной дозы zmax,, и включает следующее требование: различие в значениях дозы в любых двух точках, расположенных симметрично на противоположных сторонах относительно центральной оси, не должно превышать 2 %.

3.3. Формирование и коллимация пучка

Пучок электронов выходит из системы ускорения медицинских ускорителей в виде тонкого луча. Если аппарат работает в режиме облучения пучком тормозного излучения, то электронный пучок падает на мишень из тяжелых материалов. При работе же в режиме облучения электронами мишень отсутствует и узкий пучок (тонкий луч) электронов проходит через выходное окно в систему формирования широкого расходящегося пучка.

В настоящее время применяются два основных метода расширения узких электронных пучков: использование электромагнитного сканирования тонкого луча по облучаемой поверхности; использование рассеивающих фольг из тяжелых элементов, например, свинца. На практике более широкое распространение пока получил второй метод, особенно после того, как была разработана система, состоящая из двух фольг (рис.1.13). Первая фольга в этой системе за счет многократного рассеяния электронов превращает тонкий луч в расходящийся пучок. Вторая фольга предназначена для создания однородного профиля в поперечном сечении пучка. Толщина второй фольги имеет сложный профиль в поперечном сечении для обеспечения вместе с системой коллимации рекомендуемых значений гладкости и симметрии дозового профиля.

Система коллимации (рис.1.13 и 1.14) включает набор коллиматоров, позволяющих создавать поля разных размеров и улучшающих гладкость пучка.

27

Рис. 1.13. Принципиальная схема двухфольговой системы формирования и коллимации расходящегося пучка электронов с однородным профилем в поперечном сечении: W – окно ускорителя; B – первичный коллиматор; S1,S2 – рассеивающие фольги; F – вторичная коллимация.

Все коллиматоры обеспечивают первичное коллимирование пучка вблизи источника и вторичное коллимирование – вблизи пациента. Первичное коллимирование определяет максимальный размер поля, а вторичное определяет размеры конкретного поля облучения. Вторичные коллиматоры могут изготавляться из триммерных полос или в виде набора тубусов различного размера.

3.4. Закон обратных квадратов (положение виртуального источника)

В противоположность режиму работы с тормозным излучением, которое имеет реальный фокус (положение «точечного» источника) в месте расположения мишени ускорителя, при облучении электронными пучками такого физического фокуса не существует. Расходящийся

28

электронный пучок создается за счет рассеяния в системе фольг (см. рис. 1.2 и 1.13). Затем он испытывает дополнительное рассеяние в воздухе и в коллиматорах. Однако при проведении расчета изменения фактора выхода вследствие изменения расстояния до облучаемой поверхности, используя закон обратных квадратов, наличие такого фокуса было бы весьма удобным. Отсюда возникла идея введения некоторого виртуального точечного источника электронов [23].

Под термином “виртуальный точечный источник электронов” понимается точка пересечения обратных проекций наиболее вероятных направлений движения электронов к поверхности пациента (рис.1.14) [24]. В литературе описано несколько способов определения положения виртуального источника, например, в работе [25] предложено определять эту точку через обратное проецирование 50 % ширины профилей пучка, измеренных на разных расстояниях.

Использование понятия “расстояние виртуальный источник – поверхность” (РИП или SSD) для расчета поправки на изменение геометрического ослабления пучков по закону обратных квадратов неплохо работает для больших полей [26], однако к сожалению, приводит к достаточно значимым погрешностям для небольших размеров полей. В основном, это связано с потерей электронного равновесия в воздухе и в фантоме для небольших полей и требует дополнительной корректировки.

Альтернативный способ корректировки фактора выхода для учета воздушного зазора между концом электронного коллиматора и пациентом предложен в работе [27] и назван методом эффективного

SSD (РИП).

Эффективное SSD для электронных пучков (SSDeff) определяется как расстояние от положения виртуального источника до точки номинального SSD (обычно это изоцентр аппарата). Для нахождения SSDeff проводятся измерения дозы в фантоме на глубине zmax на разных расстояниях g, начиная с нулевого, между аппликатором и поверхностью фантома.

29

Рис. 1.14. Определение положения точечного виртуального источника электронов как точки пересечения обратных проекций наиболее вероятных направлений движения электронов к облучаемой поверхности пациента [25]

Пусть D0 – значение дозы при g = 0 и Dg – значение дозы при зазоре g. Исходя из закона обратных квадратов, имеем следующее:

 

D

 

SSDeff

+ zmax

+ g

2

 

 

 

 

0

=

 

 

 

 

 

 

 

 

(1.14)

 

D

 

 

SSD

 

+ z

 

 

 

 

g

 

 

 

max

 

 

или

 

 

eff

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D0

=

 

g

 

 

 

+1 .

(1.15)

 

 

Dg

SSDeff

+ zmax

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

30

 

 

 

 

 

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]