Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

The Nitro Group in Organic Synthesis

.pdf
Скачиваний:
177
Добавлен:
15.08.2013
Размер:
4.69 Mб
Скачать

 

 

 

 

 

 

4.1

ADDITION TO NITROALKENES 81

 

 

 

O

 

NO2

1) Bu4NF, THF, O3

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OCH2Ph

 

 

N

 

 

 

N

 

O

 

(4.35)

 

 

 

 

 

 

 

 

 

 

O

 

 

Si

 

 

2) DBU

 

 

CO2CH2Ph

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

52%

 

 

O

NO2

 

 

O

 

N

SPh

Bu4NF, O3

O

N

 

 

THF

 

O

Si

 

(4.36)

 

 

 

 

 

COSPh

 

 

 

 

 

64%

Stereocontrolled total syntheses of penicillanic acid S,S-dioxide and 6-aminopenicillanic acid from (S)-asparatic acid and (R,R)-tartaric acid, respectively, have been reported (Eq. 4.37).45

Si O

N

O

 

 

 

HO

H

 

 

 

 

S

NO2

Bu4NF, O3

 

 

 

OCH2Ph

 

N

 

THF

O

Si

 

 

 

 

 

S

CO2CH2Ph

1)CF3SO2Cl

2)LiN3

3)H2, Pd/C

 

H

80%

H3N

S

 

O

N

(4.37)

 

CO2

 

 

A stereospecific total synthesis of polyoxin C and related nucleosides is reported, in which the reaction of 1-(phenylthio)-1-nitroalkenes with nucleophiles and subsequent ozonolysis are key reactions. Addition of potassium trimethylsilanoate to 1-(phenylthio)-nitroalkenes derived from D-ribose followed by ozonolysis gives the α-hydroxy thioester, which is formed with excellent diastereoselectivity (Scheme 4.5).46 This conformation meets the stereo-electronic requirements for antiperiplanar addition of the nucleophile with the result of high 5-(S) stereochemical bias in the reactions.

However, not all nucleophiles show the same bias as shown in Scheme 4.5 on addition to the nitroalkene. The product of the addition of potassium phthalimide has 5(R) stereochemistry (Eq. 4.38).47 This stereoselective addition is applied for the synthesis of other related antibiotics, such as nikkomycine B.48

 

 

O

O

 

 

O2N SPh

1)

NK

COSPh

 

 

 

O

OMe

O

 

 

N

OMe

 

 

O

H

 

 

 

 

H

 

 

 

2) O3

 

O

O

O

O O

 

 

 

 

 

 

 

 

 

80% (ds 15:1)

(4.38)

82

MICHAEL ADDITION

 

 

 

 

 

O

O

OMe

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H

 

 

1) PhSCH2NO2, t-BuOK

 

 

 

 

 

O O

 

2) MsCl, i-Pr2NEt

 

 

 

 

O2N

SPh

 

 

 

 

 

OTMS

 

 

 

 

 

 

 

 

O

OMe

 

O2N

 

H

 

 

 

 

 

 

 

H

 

1) KOTMS, DMF, 0 ºC

 

O

 

 

2) O3, MeOH, –78 ºC

 

 

 

 

O

O

PhS

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

83%

 

 

 

 

 

 

OMe

 

 

 

COSPh

 

 

 

 

OH

 

 

HO

O

OMe

 

 

 

O

 

 

 

CO2

 

 

 

 

H

 

 

 

 

 

 

 

O

 

 

 

 

 

O O

 

H3N

N

NH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H

 

 

O

 

 

 

 

 

HO

 

OH

 

 

94% (ds 50:1)

 

 

 

Scheme 4.5.

Diastereoselective conjugate addition of oxygen and nitrogencentered nucleophiles to nitroalkenes derived from (+)-camphorsulfonic acid and ozonolysis give α-hydroxy and α-amino thiol acid derivatives (Eq. 4.39). In all cases, the (R)-diasteromer is formed as the major component.49

 

O

 

 

1)

NK , –40 ºC

 

O

S

O

S

N

 

(R)

2) O3

SO

NiPr O

 

NO2

O

2

2

SO2NiPr2

 

61% (de 71%) (4.39)

 

 

1-(Phenylthio)nitroalkenes are also excellent intermediates for the synthesis of other heterocyclic ring systems. For example, tetrahydropyran carboxylic acid derivatives are formed by the intramolecular addition of oxygen nucleophile to 1-(phenylthio)nitroalkene predominantly as the cis-isomer (9.1:1) (see Eq. 4.40). The reaction may proceed via the chair-like transition state with two pseudo-equatorial substituents.50

HF, pyridine

SPh

SiO Ph

NO2

 

 

 

SPh

Ph

O

 

t-BuOK, O3

 

NO2H

 

H

 

 

 

H

Ph O COSPh (4.40)

 

 

 

 

 

 

 

 

 

 

 

4.1

ADDITION TO NITROALKENES 83

 

 

 

 

 

 

 

O

O

STol

 

NH3

 

 

O

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

t-BuOOLi

 

 

NO2

 

O

 

 

 

 

STol

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O STol

–78 ºC

 

 

syn 12:1

 

 

 

 

 

NH2

O

 

Ph3COOK

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NO2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

–78ºC

 

 

O

O

STol

 

NH3

 

 

O

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NO2

O

 

 

 

 

STol

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

anti 15:1

 

 

 

 

 

 

 

NH2

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 4.6.

Jackson and coworkers have used a new approach to the synthesis of β-hydroxy-α-amino acids using (arylthio)nitrooxiranes. D-Isopropylideneglyceraldehyde is converted into the corresponding 1-arylthio-1-nitroalkene, which is a key material for stereoselective synthesis of β,γ-dihydroxyamino acids (Scheme 4.6). The key step is stereoselective nucleophilic epoxidation of the 1-arylthio-1-nitroalkene. Syn and anti epoxides are selectively obtained by appropriate choice of epoxidation reagent.51

The rationalization of stereoselectivity is based on two assumptions. (1) The 1-arylthio- 1-nitroalkenes adopt a reactive conformation in which the allylic hydrogen occupies the inside position, minimizing 1,3-allylic strain. (2) The epoxidation reagent can then either coordinate to the allylic oxygen (in the case of Li), which results in preferential syn epoxidation or in the absence of appropriate cation capable of strong coordination (in the case of K); steric and electronic effects play a large part, which results in preferential anti epoxidation (Scheme 4.7).52

Extension of this strategy enables syntheses of both protected D-threonine and L-allo- threonine, in which reagent-controlled stereoselective epoxidation of a common intermediate is the key step (Scheme 4.8).53

The stereoselective synthesis of anti-β-amino-α-hydroxy acid derivatives using nucleophilic epoxidation of 1-arytlthio-1-nitroalkenes has been reported (Eq. 4.41).54

O

 

 

 

 

 

 

 

 

t-BuO

NH STol

 

LiOOBut

 

 

 

 

 

–78 ºC

 

 

 

 

 

 

 

 

 

 

 

 

Ph

 

NO2

 

 

 

O

 

 

 

O

 

 

 

 

 

 

 

t-BuO

NH O STol

 

HN

 

O

 

 

 

 

(4.41)

 

 

Ph

 

NO2

 

Ph

 

COSTol

 

 

 

 

 

43%

 

 

 

 

 

 

 

 

t-BuO

 

 

 

O2N

O

 

 

O Li

 

 

O

 

 

 

 

 

 

 

 

 

O2N

 

O

O

TolS

H

 

 

 

 

 

 

 

 

 

TolS

H

 

 

 

Ph3COO K

 

 

 

 

 

 

 

 

 

 

 

 

 

syn

 

 

 

anti

 

 

Scheme 4.7.

84 MICHAEL ADDITION

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Si

 

 

 

 

 

 

 

 

 

 

 

Si

 

 

 

 

 

 

 

 

 

Si

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

O

 

 

STol

 

Ph3CO2K

 

 

O STol

 

NH3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NO2

 

THF, –78 ºC

 

 

 

 

O

NO2

 

 

 

 

 

 

 

 

 

 

STol

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NH2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BF3•Et2O

 

 

 

 

 

82% (ds 20:1)

86%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OH

 

STol

 

Ph3CO2Li

 

 

OH

STol

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NO2

THF, –78 ºC

 

 

 

 

 

NO2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

65% (ds 100%)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Si

 

 

 

 

 

 

 

 

 

 

Si

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TBSOTf

 

 

 

 

 

 

NH3

O O

 

 

 

 

 

 

 

O

 

 

STol

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

NO2

 

 

 

 

 

 

 

 

 

 

 

STol

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NH2

 

 

 

 

 

 

 

 

 

 

 

 

82% (ds 20:1)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

65%

 

 

 

 

Scheme 4.8.

An elegant synthesis of (5R, 6S, 8R)-6-(α-hydroxyethyl)-2-(hydroxymethyl)penem-3-car- boxylic acid has been accomplished by the strategy based on the Michael addition and Nef reaction (Scheme 4.9).55

Si

 

1) KS

Si

 

 

 

 

 

O

 

 

 

 

 

 

 

O

 

KS NO2

 

 

 

 

 

S

 

NO2

 

OC(O)Ph

 

 

 

2) Me2SO4

Me

 

Me

 

SMe

 

 

 

 

 

 

 

 

 

NH

 

 

NH

 

 

 

 

O

 

 

O

 

 

 

 

 

 

 

 

 

 

76%

 

 

 

 

 

 

 

 

1) O

 

Si

 

 

 

 

 

O

 

 

 

 

Cl

CO2PNB

S

NO2

LiN(SiMe3)2

 

Me

SMe

 

2) P(OMe)3

N

 

 

 

 

 

O

 

 

 

 

 

 

CO2PNB

 

 

 

 

 

1) 75%, 2) 90%

 

 

 

Si

O

 

 

OH

 

 

 

 

 

 

 

Me

S SMe

 

Me

S

OCONH2

 

N

NO2

 

O

N

 

 

O

 

 

CO2Me

 

 

 

 

 

 

60%

 

 

 

 

 

Scheme 4.9.

4.1 ADDITION TO NITROALKENES

85

4.1.3 Conjugate Addition of Carbon-Centered Nucleophiles

4.1.3a Active Methylene Compounds Nitroalkenes are powerful Michael acceptors that can serve as synthons of the type +C-C-NH2 and +C-(C=O)R. Classically, the reactions of nitroalkenes with carbon-centered nucleophiles have been limited to reactions carried out under mildly basic conditions using relatively acidic reaction partners such as malonate derivatives and 1,3-diketones.56 The Michael addition of such active methylene compounds to nitroalkenes is catalyzed by various bases, including ROM (M = metal), triton B, and triethylamine. For example, the reaction of acetyl acetone or ethyl acetate with nitrostyrene proceeds in the presence of catalytic amounts of triethylamine at room temperature to give the adduct in 98% or 78% yield, respectively. The addition products are useful intermediates for the preparation of furans or pyrroles.57 Metal complex catalysts such as Ni(acac)2 are also effective to induce the Michael addition of acetyl acetone to nitrostyrene.58 Yoshikoshi and coworkers have found that the potassium fluoride-catalyzed addition of 1,3-dicarbonyl compounds to nitroalkenes leads to the formation of furans (Eq. 4.42) or Michael adducts and their Nef products (Eqs. 4.43 and 4.44), depending on substrates and conditions.59

 

O

 

 

 

 

 

 

 

 

 

 

O

 

 

 

Me

 

 

 

 

 

 

 

 

 

 

 

 

 

 

KF, xylene

 

 

 

 

 

 

+

 

 

 

 

 

(4.42)

 

 

 

 

 

 

 

 

 

 

Me

 

 

 

 

 

 

reflux

O

Me

 

 

NO2

 

 

 

 

O

 

 

 

 

 

 

Me

 

Me

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

52%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

O

 

 

Me

 

 

 

 

 

 

Me

Me

 

 

Me

 

KF, xylene

 

 

 

 

 

 

 

 

 

+

 

 

 

 

(4.43)

 

 

NO2

 

 

reflux

O

O

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

96%

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

Me

 

 

KF, xylene

 

 

 

 

 

 

 

 

 

 

 

 

 

CO2Et

+

 

 

 

 

 

 

 

 

 

 

reflux

 

 

 

 

NO2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

O

CO2Et

 

 

 

 

 

 

 

 

CO2Et

 

 

 

 

 

 

 

 

 

 

Me

+

Me

(4.44)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

NO2

 

 

 

 

 

 

20%

 

 

 

 

47%

 

The Michael addition of nitroalkanes to nitroalkenes is catalyzed by triethylamine to give 1,3-dinitro compounds (Eq. 4.45).60 In some cases, the intramolecular displacement of the nitro group takes place to give cyclic nitronates (Eq. 4.46).61

 

 

 

 

 

R2

R2

 

Et N or K CO

O2N

NO2

R1

+ R3 NO2

3

2 3

(4.45)

 

 

 

NO2

 

 

 

R1

R3

 

 

 

 

51-98%

86 MICHAEL ADDITION

 

 

 

 

 

 

 

 

 

 

 

 

Ph

CO2Et

 

Me

NO

CO2Et

KF/Al O

 

 

 

 

2

 

2

3

 

 

 

 

 

+ Ph

 

 

 

Me

N

O

(4.46)

Me

NO2

MeCN

 

 

 

H

 

 

Me

O

 

 

 

 

 

 

 

 

70%

 

 

The asymmetric Michael addition of 1,3-dicarbonyl compounds to nitrostyrene is promoted by chiral alkaloid catalysts to give the addition products in good chemical yield, but the enantioselectivity is rather low (Eq. 4.47).62

 

 

 

 

Me

Ph

O

O

Ph

(–)-quinine

O

NO2

 

 

+

NO2

 

 

(4.47)

 

 

 

Me

Me

 

 

O

Me

89% (16% ee)

Recently, very effective asymmetric conjugate addition of 1,3-dicarbonyl compounds to nitroalkenes has been reported, as shown in Scheme 4.10. The reaction of ethyl acetoacetate with nitrostyrene is carried out in the presence of 5 mol% of the preformed complex of magnesium triflate and chiral bis(oxazoline) ligands and a small amount of N-methylmorpholine (NMM) to give the adduct with selectivity of 91%. The selectivity depends on ligands. The effect of ligands is presented in Scheme 4.10.63

O

O

ligand (5.5 mol%)

O

Ph

ligand:

R

R

Mg(OTf)2 (5 mol%)

O

O

 

 

 

 

Me

OEt

 

NMM (6 mol%)

 

 

NO2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHCl3, sieves

Me

 

N

N

Ph

 

 

 

CO2Et

 

NO2

 

RT, 3 h

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Entry

Ligand

Selectivity (%)

Conversion (%)

 

 

1

 

R R

 

 

 

 

 

 

 

 

 

1

1a

 

95

 

96

 

O

O

2

1b

 

65

 

33

 

R2

R2

3

1c

 

77

 

44

 

 

N

N

 

 

 

 

R1

R1

4

2c

 

58

 

9

 

 

 

 

 

 

2: R1 = Ph, R2 = H

5

3c

 

0

 

7

 

 

 

 

 

 

3: R1 = CMe3, R2 = H

6

4c

 

76

 

15

 

 

7

4a

 

82

 

99

 

4: R1 = R2 = Ph

a: R = -CH2CH2-; b: R = H, c: R = Me

Scheme 4.10.

4.1.3b Enolates Derived From Ketones and Esters and Carbanions Stabilized by Sulfur In recent years, a variety of procedures for the successful addition of simple ketones or esters to nitroalkenes have been developed. Seebach and coworkers have reported

4.1 ADDITION TO NITROALKENES

87

the Michael-type addition of lithium enolates, sulfur-substituted organolithium reagents, and

other reactive carbanions to nitroalkenes. Some typical examples are presented in Eqs. 4.48 and 4.49.64a

OLi

 

 

 

 

NO2

 

O

NO2

 

 

 

 

+

THF

O

 

 

 

 

 

(4.48)

 

 

–78 ºC

 

 

 

O

 

O

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

93%

 

S

 

Me

NO2

 

S

 

LDA

 

O2N

S

 

 

 

 

(4.49)

 

THF, –78ºC

 

 

S

 

 

 

Me

 

 

 

 

 

 

 

 

 

 

 

65%

 

Dianions or trianions derived from 1,3-dicarbonyl compounds react with nitroalkenes at low temperature to give the adduct, which undergoes a nitro-aldol type cyclization (Eq. 4.50).64c

Nitroethylene is extremely reactive and sensitive to strong basic conditions, but various ketone and ester enolates undergo alkylation with nitroethylene at low temperature (Eq. 4.5165 and Table 4.1).

 

 

OMe

 

O O

 

 

OMe

 

 

 

1) LDA, THF, –78 ºC

 

 

 

2) MeO

O

O

 

 

 

NO2

 

 

 

MeO

NO2

 

 

 

NO2

 

 

 

HO

OMe

 

 

 

 

 

 

OMe

(4.50)

 

 

 

 

O

 

 

 

68%

 

 

O

 

O

 

 

 

NO2

1) LDA, THF, –78 ºC

 

 

 

 

(4.51)

2)NO2

74%

Nitroalkenes react with lithium dianions of carboxylic acids or with lithium enolates at –100 °C, and subsequent treatment of the Michael adducts with aqueous acid gives γ-keto acids or esters in a one-pot operation, respectively (Eq. 4.52).66 The sequence of Michael addition to nitroalkenes and Nef reaction (Section 6.1) provides a useful tool for organic synthesis. For example, the addition of carbanions derived from sulfones to nitroalkenes followed by the Nef reaction and elimination of the sulfonyl group gives α,β-unsaturated ketones (Eq. 4.53).67

88

MICHAEL ADDITION

 

 

 

 

 

 

Table 4.1. Michael Addition to Nitroalkenes

 

 

 

 

R-H

 

 

Base

Nitroalkene

Product

 

Yield (%)

Reference

 

O

 

LDA

 

NO2

O

 

81

65

 

Ph

Me

 

Ph

NO2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

O

NO2

 

 

 

 

 

 

 

NO2

 

 

 

 

 

 

LDA

 

 

 

72

65

 

 

 

 

 

 

 

 

 

O

 

 

 

O2N

O

 

 

 

 

 

LDA

 

NO2

 

 

62

71

 

 

 

 

 

 

 

 

 

 

N

 

 

 

 

N

 

 

 

 

CH2Ph

 

 

 

CH2Ph

 

 

 

O

 

 

 

O

NO2 57

 

 

BuO

 

LDA

 

NO2

BuO

65

 

 

 

 

 

 

 

 

 

Me

 

 

 

Me

 

 

 

O

 

 

 

 

O

 

 

 

 

 

 

 

 

MeO

NO2

 

 

 

 

 

LDA

 

NO2

94

65

MeO

 

 

 

 

 

 

 

PhO2S

 

LDA

Me

 

 

NO2

90

72

 

NO2

PhO S

Me

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

NO2

 

 

O

 

SPh LDA

 

NO2

O

CO Et

85

73

 

OEt CO Et

 

 

 

 

 

 

 

 

 

OEt SPh 2

 

 

 

 

2

 

 

 

 

 

 

 

Ph

N CO2Et

 

 

 

Ph

NO2

 

 

LDA

Ph

NO2

Ph

 

66

74

 

Ph

 

Ph N

CO Et

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

O

SPh

 

 

1) LDA, THF, –78 ºC

 

(4.52)

 

 

 

 

PhS CO2H 2)

CO2H

 

 

NO2

80%

 

 

3) H+

 

 

1)LDA

2)Et

SO2Ph

NO2

(4.53)

+

O

3) H

 

 

82% (E/Z = 2/1)

4) DBU

4.1 ADDITION TO NITROALKENES

89

A simple synthesis of allethrolone, the alcohol component of the allethrine (commercially important insecticide), is shown in Scheme 4.11. The conjugated addition of 3-phenylthio-5- hexene-2-one to 1-nitro-1-propene followed by the Nef reaction and aldol condensation gives allethrolone in good yield.68

1) NaH

PhS

 

2) Me

NO2

 

 

 

 

O

 

 

 

 

 

 

 

PhS

 

1) MeONa/MeOH

 

Me

 

 

 

2) H+, H2O

 

O

 

 

NO2

 

 

 

 

 

 

 

84%

 

 

 

 

 

 

 

 

O

PhS

 

EtONa

 

Me

 

EtOH

 

 

O CHO

 

HO

Me

81%

 

 

 

67%

Scheme 4.11.

Pyroglutamic acid is a useful starting material for the synthesis of several natural products, such as pyrrolidine alkaloids, kainoids, and other unnatural amino acids. Interesting chemoselective Michael additions of anions derived from pyroglutamates have been reported (see Eqs. 4.54 and 4.55).69

 

 

 

 

NO2

 

 

 

 

 

 

 

 

 

 

CO2Me

 

 

 

 

 

 

O

N

NO2

 

 

 

 

 

N

 

 

 

 

 

 

 

 

 

 

 

 

LiHMDS

 

 

 

 

O

N

CO2Me

Boc

Ph

 

 

(4.54)

 

 

 

 

 

 

 

 

 

 

 

 

Ph

 

 

 

 

N

 

 

 

 

 

 

 

Boc

 

 

 

 

 

 

 

 

55%

 

 

 

 

 

NO2

 

 

 

 

 

 

 

 

 

 

NO2

CO2Me

 

 

 

 

 

 

 

 

 

 

 

 

LiHMDS

N

 

 

NBoc

 

 

 

 

Boc

 

 

 

 

 

 

 

 

 

 

 

 

O N CO2Me

 

 

 

O

(4.55)

 

 

Boc

 

 

 

N

 

 

 

 

 

 

 

 

Boc

 

 

 

 

 

 

 

 

59%

 

A short synthesis of prostaglandin derivatives via a three component coupling reaction is reported, in which the enolates are trapped with nitroalkenes. The nitro group is removed via

90 MICHAEL ADDITION

radical denitration (Section 7.2) or is transformed into the carbonyl group by the Nef reaction (Section 6.1) (Eq. 4.56).70

O

 

 

Li

+

CO2Me

+

 

OSiMe2But

NO2

 

ButMe2SiO

 

 

O

NO2

CO2Me

 

 

CuI

 

(4.56)

 

 

THF

 

 

ButMe2SiO

OSiMe2But

 

 

71%

 

A variety of carbanions have been employed for the conjugate addition to nitroalkenes; recent results are shown in Table 4.1.

Seebach and coworkers have developed a useful multiple coupling reaction using nitropropenyl pivalate. This opens a possibility of successive introduction of two different nucleophiles, as exemplified in Eq. 4.57 (see also Section 3.2).75

1)S Ph

NO2

 

S Li

NO2

 

 

S S

 

 

2)

 

OEt

(4.57)

OCOBut

OEt

Ph

 

 

O

 

 

 

OLi

 

 

 

66%

 

 

 

 

 

Asymmetric Michael addition of chiral enolates to nitroalkenes provides a useful method for the preparation of biologically important compounds. The Michael addition of doubly deprotonated, optically active β-hydroxycarboxylates to nitroalkenes proceeds with high diastereoselectivity to give erythro-hydroxynitroesters (Eq. 4.58).76

 

CO2Et

 

 

 

OH

 

O

 

 

 

 

 

 

 

 

 

H

H

LDA

 

NO2

 

OEt

(4.58)

 

 

HO

H

–78 ºC

 

 

 

 

NO2

 

 

 

 

 

 

 

 

 

 

 

Me

 

 

 

 

56%

 

 

 

 

 

 

 

 

Chiral enolates of 1,3-dioxalan-4-ones, methyl 1,3-oxazolidine-4-carboxylates, and 1,3-imi- dazolidine-4-ones derived from chiral natural sources such as (S)-proline, (S)-serine, and (S)-threonine are added to nitroalkenes in high diastereoselectivity (Scheme 4.12).77

Enantioselective synthesis of the antidepressant rolipram can be done by the asymmetric Michael addition of the enolate of N-acetyloxazolidone to nitrostyrene. Chirally branched pyrrolidones like rolipram are highly active antidepressants with novel postsynaptic modes of action. The synthesis is shown in Scheme 4.13.78

Seebach and Brenner have found that titanium enolates of acyl-oxazolidinones are added to aliphatic and aromatic nitroalkenes in high diastereoselectivity and in good yield. The effect of bases on diastereoselectivity is shown in Eq. 4.59. Hydrogenation of the nitro products yields γ-lactams, which can be transformed into γ-amino acids. The configuration of the products is assigned by comparison with literature data or X-ray crystal-structure analysis.

Соседние файлы в предмете Химия