Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

The Nitro Group in Organic Synthesis

.pdf
Скачиваний:
170
Добавлен:
15.08.2013
Размер:
4.69 Mб
Скачать

5.5 ALKYLATION OF NITRO COMPOUNDS USING TRANSITION METAL CATALYSIS 141

The monoanions of primary nitroalkanes, phenylnitromethane, and α-nitro esters are all preferentially C-alkylated by cinnamyl acetate and 2-butenyl acetate in 50–89% yield in the presence of Pd catalyst (Eq. 5.51).75 The α-nitro ester gives the C-alkylate in 89% yield, but 2-nitropropane gives the C-alkylate in only 29% yield. The main product is cinnamaldehyde, which is derived from O-alkylation.75a

Ph

OAc

R1

R2

Yield

A/B

+Pd(PPh3)4

 

Li+

 

 

 

CO2Et

Et

89%

97/3

 

 

 

 

 

 

 

NO2

 

R1

 

Ph

Me

Me

29%

93/7

 

 

R2

+

 

 

 

 

 

Ph

 

R1

NO2

 

 

 

 

 

NO2

 

 

R2

 

 

 

 

 

A

 

 

B

 

 

(5.51)

Wade and coworkers have found that α-nitro sulfones are useful reagents in organic synthesis because they are converted into nitroalkanes, nitriles, or carboxylic acids (see Eq. 5.52).76

(Phenylsulfonyl)nitromethane is preferentially C-alkylated by allylic acetates in the presence of Pd(PPh3)4 (5 mol%) to give various α-nitro sulfones as shown in Eq. 5.53.76

H H O

 

 

 

NH2

 

RCH2NO2

 

 

 

N

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CH2Ph

 

 

 

 

 

 

 

 

 

hυ

 

 

 

 

 

 

R SO2Ph

 

 

TiCl3

 

 

 

RCN

(5.52)

NO2

KMnO4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RCO2H

 

 

 

+

 

NO2

 

Pd(PPh3)4, PPh3

 

OAc

PhO2S

 

Li+

 

THF, reflux, 5 h

 

 

 

 

 

 

 

 

 

 

NO2

 

 

 

(5.53)

 

 

83%

SO2Ph

 

 

 

 

Allylic carbonates are better electrophiles than allylic acetates for the palladium-catalyzed allylic alkylation.77 Reaction of Eq. 5.54 shows the selective allylic alkylation of α-nitro ester with allylic carbonates without affecting allylic acetates.78

 

OCO Et +

NO2

Pd(dppe)

AcO

NO2

AcO

 

 

 

 

 

 

 

2

EtO2C

THF, RT

81%

CO Et

 

 

 

 

2

(5.54)

142 ALKYLATION, ACYLATION, AND HALOGENATION OF NITRO COMPOUNDS

As the nitro group is removed by radical denitration with Bu3SnH, allylic alkylation of α-nitro ketones with allyl carbonates in the presence of Pd(0) followed by denitration with

Bu3SnH provides a new regio-selective allylation of ketones under neutral conditions (Eq. 5.55).79

NO2

 

Pd(PPh3)4

O2N

+ Ph

OCO Et

THF, RT

Ph

 

 

2

 

O

 

 

O

 

 

70%

 

 

 

 

H

Ph

 

Bu3SnH, AIBN

 

(5.55)

 

 

 

 

O

 

 

 

85%

 

 

2-Nitrocycloalkanones can be successfully C-allylated by Pd(0)-catalyzed reaction with various allyl carbonates and 1,3-dienemonoepoxides under neutral conditions, as shown in Eqs. 5.56 and 5.57, respectively.80a The product of Eq. 5.56 is converted into cyclic nitrone via the reduction of nitro group with H2-Pd/C followed by hydrolysis and cyclization.80b

O

 

 

O

 

 

NO2

NO2

 

 

CO2Me

Pd(PPh3)4

CO2Me

+

 

(5.56)

 

OCO2Et

 

 

 

 

 

92%

O

 

 

O

NO2

O

 

NO2

Pd(PPh3)4

 

 

+

OH (5.57)

 

 

 

Me

 

Me

 

 

 

90%

Recent papers have disclosed that Pd(0) catalyzed allylic alkylations under neutral conditions are not limited to allylic carbonates or epoxides but also can be extended in many cases to the more popular allylic acetates (Eq. 5.58).81a

 

 

CO2Me

Pd(dba)

Ph

NO2

Ph

OAc

+

3

(5.58)

PPh3, DMSO

 

O2N

 

CO2Me

 

 

 

 

 

 

 

 

 

80%

Wong and co-workers have prepared various quaternary α-nitro-α-methyl carboxylic acid esters by the palladium-catalyzed allylic alkylation of α-nitropropionate ester (Eq. 5.59). The products can be kinetically resolved by using α-chymotrypsin and are converted into optical active α-methyl α-amino acids. Such amino acids are important due to the unique biological activity of these nonproteinogenic α-amino acids.82

5.5 ALKYLATION OF NITRO COMPOUNDS USING TRANSITION METAL CATALYSIS 143

Me

 

Pd(PPh3)4

Me NO2

OAc +

CO2Me

 

(5.59)

PPh3

O2N

 

CO2Me

 

 

94%

 

 

 

Rajappa and co-workers have reported synthesis of dipeptides with an α,α-bisallylglycine residue at the NH2-terminal, which are biologically important.83 Their strategy is based on (1) nitroacetylation of an amino acid derivative, (2) regioselective bisallylation by Pd-catalyzed reaction, and (3) generation of the free terminal NH2 from the NO2 group as shown in Scheme 5.8. Esters of L-proline, L-valine, and L-phenylalanine are converted into the corresponding N-nitroacetyl derivatives using 1,1-bis(methylthio)-2-nitroethylene84 (see Section 4.2, Michael addition). Subsequent palladium-catalyzed allylation followed by reduction with Zn in AcOH gives the desired dipeptides.

 

 

 

 

 

 

 

 

 

 

O2N

 

SMe

 

 

SMe

 

 

 

 

 

 

 

 

 

 

O2N

+

 

CO2CH2Ph

 

 

TsOH

N

 

 

N

 

 

 

 

 

CO2CH2Ph

 

SMe

 

 

 

 

 

 

 

 

 

H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

CO2CH2Ph

 

 

 

 

 

 

O

CO2CH2Ph

 

HgCl2

 

 

Ph

OAc

 

 

 

 

 

N

 

 

 

 

 

 

 

 

 

 

 

 

Ph

 

N

 

 

 

 

 

 

 

 

 

 

 

 

 

MeCN, H2O

 

 

 

DBU, Pd(PPh3)4

 

 

 

 

O2N

 

 

NO2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

50–60%

 

 

NO2

 

75%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ph

 

 

 

 

Ph

 

 

 

Ph OAc

O N

DBU, Pd(PPh3)4

PhH2CO2C

95%

Scheme 5.8.

Hydroxamic acids constitute an important class of siderophores, which play a major role in iron solubilization and transport. Some of them are important as therapeutic agents. The Michael addition of nitroacetyl proline esters to allyl acrylate followed by Pd(0)-catalyzed intramolecular allyl transfer and subsequent reduction of the nitro group yields a novel class of cyclic hydroxamic acids related to pyroglutamic acid (Scheme 5.9).85

O

O

 

 

O2N H

KF

O

 

OMe

O2N

+

 

 

 

 

O

 

O

 

O

OMe

 

 

 

 

 

 

85%

 

OMe

 

O

 

O

Pd(dba)2, PPh3

O2N

Zn/AcOH

OMe

 

OMe

O

HON

+

AcON

DBU, MeCN

 

Ac2O

HO

 

 

 

 

30 ºC

 

 

 

 

 

 

O

 

O

 

O

 

 

 

 

 

 

 

 

63%

 

55%

 

40%

Scheme 5.9.

144 ALKYLATION, ACYLATION, AND HALOGENATION OF NITRO COMPOUNDS

 

 

Me

 

 

 

 

Me

 

 

 

 

H

 

 

(CO2Me)2O

 

 

 

 

H

 

Pd(PPh3)4

HO

N

 

 

 

 

 

 

MeO

O

N

 

 

 

 

NHBoc DMAP (cat.)

 

 

 

 

NHBoc

 

 

 

O

 

 

 

 

CH3NO2

 

 

 

 

 

 

 

 

 

 

 

O

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H

Me

 

 

 

 

Me

S

 

 

 

 

 

1) TFA, CH2Cl2

 

H

 

Ph

O2N

N

 

 

 

 

 

 

 

 

 

O2N

N

 

 

 

NHBoc 2) PhNCS

 

 

 

N

 

N

 

 

 

O

 

 

 

 

H

 

H

 

 

 

 

 

 

 

O

 

 

 

 

60–65%

 

 

 

 

 

 

 

 

 

 

89%

 

 

 

 

TFA

 

 

 

 

NH2•TFA

Boc2O, Et3N

 

 

NHBoc

 

 

 

O2N

 

 

 

 

O2N

 

 

 

 

 

 

 

 

NHBoc

 

 

 

 

 

 

Nef reaction

 

 

 

 

 

 

 

 

 

 

 

 

 

HO

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 5.10.

1,4-cis-Disubstituted cyclopentene precursors of carbocyclic nucleosides are prepared by acyl-nitroso hetero Diels-Alder reaction and subsequent Pd(0)-catalyzed allylic alkylation. Acylnitroso dienophiles derived from amino acids are used for asymmetric hetero Diels-Alder reaction. The alcohol in Scheme 5.10, prepared by this route,86 is converted into the corresponding nitromethyl group by Pd(0)-mediated alkylation.87 Removal of the L-alanine side chain followed by the Nef reaction leads to an important intermediate for the preparation of carbovir, aristermycin, and related analogs, which show potent and selective anti-HIV activity.88a A short, enantioselective synthesis of the carbocyclic nucleoside carbovir is also reported, in which the reaction of Pd catalyzed allylation of nitro compounds is used in a key step.

Miller and coworker report a total synthesis of carbocyclic polyoxin C from cis-(N-tert- butylcarbamoyl)cyclopent-2-en-1-ol, as shown in Scheme 5.11.89 This synthesis features a

 

 

 

 

 

OMe

 

 

NO2

 

AcO

NHBoc

+

O2N

 

Pd(PPh3)4

MeO

NHBoc

 

 

 

 

NaOAc

 

 

 

 

 

 

O

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

95%

 

 

 

 

 

 

NHCbz

 

MeO

O

 

1)

TiCl3, tartaric acid,

 

 

 

 

 

MeO

NHBoc

H NCO

 

 

NaBH4

 

 

 

2) CbzCl

 

 

 

O

 

1) TFA

 

 

 

 

 

 

 

2) DBU

 

 

 

 

 

 

87%

 

 

 

 

 

 

 

 

 

 

 

 

 

H

 

 

 

 

 

H

 

 

 

 

 

 

 

 

O N

O

 

O

N

O

 

 

 

 

 

 

 

 

NHCbz

 

NHCbz

 

 

 

1) NaOH

 

 

 

 

 

 

MeO

N

 

MeO

 

NH

 

 

2) NH4OH

 

 

 

 

 

 

 

 

 

O

 

OMe

 

3) BnBr

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

80%

 

 

84%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H

O

 

 

 

 

 

 

 

NH3+

O N

 

 

1) OsO4, NMO

O2C

 

 

 

 

 

N

 

 

 

2) H2, Pd/C

 

 

 

 

 

 

 

 

 

 

 

O

HO OH

Scheme 5.11.

5.5 ALKYLATION OF NITRO COMPOUNDS USING TRANSITION METAL CATALYSIS

 

145

Ph O

O Ph

Pd (dba)

•CHCl

3

Ph

O

N3

PPh

3

 

 

 

2

3

 

 

 

 

 

 

 

 

+ Me3SiN3

 

 

 

 

 

 

 

(BOC)2O

O

O

THF

 

 

 

O

 

 

 

Ph

 

Ph

 

 

 

77% (98% ee)

 

 

 

 

 

O

 

 

O

 

 

 

 

 

 

 

NH

HN

 

 

 

 

 

 

 

 

 

 

PPh2 Ph2P

 

 

 

 

 

 

 

 

 

 

SO2Ph

 

 

 

NO2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ph O

NHBoc

O2N

PhO2S

 

 

NHBoc

DBU

 

 

 

 

Pd2(dba)3•CHCl3

 

 

 

tetrabutylammonium

O

 

 

 

 

 

 

 

 

88%

PPh3

 

 

 

 

96%

 

oxone

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

NH2

 

 

 

 

 

 

 

 

 

N

 

N

O

 

 

 

 

 

 

 

H

 

 

 

 

 

 

N

 

 

 

 

 

 

 

 

 

 

N

 

 

 

 

 

NHBoc

 

 

 

 

 

HO

 

 

 

 

 

 

 

 

 

 

N

 

N

MeO

HO

 

 

N

 

 

 

 

 

 

 

 

N

NH2

 

 

 

 

 

 

 

 

 

 

 

 

 

47%

 

 

 

 

 

 

 

 

HO

OH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

carbovir

 

 

aristeromycin

 

 

 

 

 

 

 

 

 

 

 

 

 

NH2

 

 

 

 

 

O

 

 

 

 

N

 

N

 

 

 

 

 

 

 

 

NH2

O

 

 

 

 

 

 

N

 

 

 

N

 

 

 

 

 

 

 

 

 

 

 

 

N

 

 

 

 

H

 

 

 

 

EtHN

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+H N

NH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

2Cl

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

HO

OH

 

 

 

 

amidinomycin

 

C-NECA

 

 

Scheme 5.12.

Pd(0)-catalyzed substitution reaction, a novel, mild reduction of α-nitro ester to an amino acid ester with TiCl3, and an improved procedure for uracil ring formation.

Trost and co-workers have explored asymmetric transition metal-catalyzed allylic alkylations. Details on this subject have been well reviewed by Trost and others.90 With the use of asymmetric palladium-catalyzed desymmetrization of meso-2-ene-1,4-diols, cis-1,4-dibenzoy- loxy-2-cyclopentene can be converted to the enantiometrically pure cis-4-tert-butoxycar- bamoyl-1-methoxycarbonyl-2-cyclopentene.91 The product is a useful and general building block for synthesis of carbocyclic analogs of nucleosides as presented in Scheme 5.12.

Another approach to asymmetric syntheses of carbonucleosides is presented in Scheme 5.13. The reaction of cis-1,4-dibenzoyloxy-2-cyclopentene with the lithium salt of (phenylsulfonyl)nitromethane in the presence of Pd catalyst and a chiral ligand gives a chiral isoxazoline N-oxide, in which C-alkylation and O-alkylation of nitronates take place simultaneously. Deoxygenation with SnCl2 2H2O in MeCN gives the isoxazoline in 94% yield, which is converted into the corresponding hydroxy ester on treatment with MeOH in the presence of K2CO3 followed by reduction with Mo(CO)6. Thus, diastereoand enantioselective hydroxyalkoxycabonylation of cyclopentene ring provides useful building blocks for the synthesis of important antiviral carbanucleosides, as shown in Scheme 5.13.92

Enantioselective allylations of α-nitro ketones and α-nitro esters with allyl acetates are carried out in the presence of 2 equiv of alkali metal fluorides (KF, RbF, CsF) and 1 mol% palladium catalysts prepared in situ from Pd2(dba)3 CHCl3 and chiral phosphine ligands. Moderate enantio-selectivity (ca 50% ee) is reported for allylation of α-nitroketones (Eq. 5.60). The highest selectivity (80% ee) is observed for allylation of the reaction of tert-butyl ester (Eq. 5.61).93

146 ALKYLATION, ACYLATION, AND HALOGENATION OF NITRO COMPOUNDS

 

 

 

SO2Ph

 

 

SO2Ph

 

 

 

 

Ph O

O

Ph O N

 

 

 

1) SnCl22H2O

CO2Me

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

O

O

Pd2(dba)3•CHCl3

 

 

N

O

2) MeOH/K2CO3

 

 

 

 

O

 

 

 

 

 

THF

 

 

 

3) Mo(CO)6

 

OH

 

 

 

Ph

Ph

 

 

 

 

 

 

1) 94%

 

 

 

O

O

94% (95% e.e.)

 

 

 

 

 

 

 

 

 

2) 91%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PPh2 Ph2P

 

 

 

 

 

 

3) 94%

 

 

 

chiral ligand

 

 

 

 

 

 

 

NH2

 

 

 

 

 

 

O

 

 

 

 

LiAlH4

 

ClCO2Me

 

O

OMe

Pd(OAc)2

 

N

N

 

 

 

 

 

 

 

 

OH

 

 

 

 

OH

 

 

O

 

adenine

N N

 

 

 

 

O

 

 

 

 

 

OH

 

 

OMe

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

95%

 

 

98%

 

 

 

 

96%

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 5.13.

 

O

 

 

 

 

 

 

O

 

 

NO2

 

 

Pd2(dba)3•CHCl3

 

 

NO2

 

 

 

+

OAc

 

 

 

(5.60)

 

 

 

RbF, chiral ligand

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CH2Cl2, –20 ºC

 

 

95% (58% ee)

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

O2N

O

+

 

OAc

O

O

 

 

 

 

 

N

Me

 

 

 

 

 

X

 

 

 

Me

 

 

O

 

 

 

 

 

O

nMe

(5.61)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pd2(dba)3•CHCl3

 

*

OR

 

 

H

 

RbF, chiral ligand

 

Me NO2

 

 

Ph2P Fe

 

 

 

 

Ph2P

 

 

 

 

 

92% (80% ee)

chiral ligand

 

 

 

 

 

 

 

 

 

 

Asymmetric synthesis of tricyclic nitro ergoline synthon (up to 70% ee) is accomplished by intramolecular cyclization of nitro compound Pd(0)-catalyzed complexes with classical C2 symmetry diphosphanes.94 Palladium complexes of 4,5-dihydrooxazoles are better chiral ligands to promote asymmetric allylic alkylation than classical catalysts. For example, allylic substitution with nitromethane gives enantioselectivity exceeding 99% ee (Eq. 5.62).95 Phosphinoxazolines can induce very high enatioselectivity in other transition metal-catalyzed reactions.96 Diastereoand enantioselective allylation of substituted nitroalkanes has also been reported.95b

 

 

 

 

 

 

Ph

 

 

 

 

 

Ph

 

OCO2Me CH

NO

2

NO2

PdL+

 

Me N

 

 

 

 

 

3

 

Ph

=

Me

 

 

 

Ph

 

PdL+

 

O

PPh2

 

 

 

 

 

Me

 

 

THF

 

87% (99% ee)

 

 

 

 

 

 

 

 

 

 

+ Pd2(dba)3•CHCl3

 

 

 

 

 

 

 

 

 

(5.62)

 

 

 

 

 

 

 

 

 

 

 

 

5.6

ARYLATION OF NITRO COMPOUNDS 147

 

 

 

 

 

 

 

 

 

 

 

 

 

OH

 

 

 

 

 

 

 

OH

 

 

OAc acetylcholine esterase

 

 

 

 

 

LiCH(NO2)SO2Ph

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Phosphate buffer

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

25–27 ºC, 23 h

 

OAc

 

 

 

 

 

Pd(OAc)2, PPh3

 

 

O2N SO2Ph

OAc

 

77% (92% ee)

 

 

THF, 60 ºC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

89%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OH

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Me

 

KO2CN NCO2K

 

 

 

 

 

1) O3, NaOMe, MeOH

 

 

 

 

 

 

 

 

O

 

AcOH, DMSO

 

 

 

 

2) H+

 

 

 

Me

 

 

 

 

 

 

 

 

 

 

 

 

O2N

SO2Ph

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

65%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OH

 

 

 

 

OCO

Me 1) PhSO2CH2NO2

 

 

PhO2S NO2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ClCO2Me

 

 

 

 

 

2

 

Pd(OAc)2, PPh3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

pyridine

 

 

 

 

 

 

 

 

 

2) KOH

 

 

OH

OAc

 

OAc

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

91%

 

 

 

 

O

95%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1) KO2CN

NCO2K

 

 

 

Me

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

2) O3, NaOMe, MeOH

 

 

 

 

 

Me

 

 

 

 

 

 

 

 

 

 

 

3) H+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

58%

 

 

 

 

 

 

Scheme 5.14.

An enantio-selective enzymatic hydrolysis of meso-(E)-2,5-diacetoxy-3-hexene gives (+)- (E)-(2S,5R)-5-acetoxy-3-hexen-2-ol in 77% yield (92% ee).97 The monoacetate with its two allylic groups offers possibilities for stereo-controlled introduction of nucleophiles via Pd(0) catalysis. Synthesis of both enantiomers of the Carpenter bee pheromone based on this strategy is presented in Scheme 5.14.98

Tamura and coworkers have reported a novel C-C-bond formation reaction using organotellurium chlorides and lithium nitronates. A combination of the bis(organo)tellurium dichlorides [(R1COCH2)2TeCl2] and LiC(NO2)R2R3 leads to the coupling products R1COCH = CR2R3 in good yields. The reaction proceeds by a polar mechanism that is initiated by coordination of the nitronate oxygen atom to the tellurium followed by intramolecular C-C bond formation and subsequent elimination of nitro and tellurium moieties.99

5.6 ARYLATION OF NITRO COMPOUNDS

Arylations of nitro compounds can be achieved by aromatic nucleophilic substitution using aromatic nitro compounds, as discussed in Chapter 9.100 Kornblum and coworkers reported displacement of the nitro group of nitrobenzenes by the anion of nitroalkanes. The reactions are usually carried out in dipolar aprotic solvents such as DMSO or HMPA, and nitroaromatic rings are substituted by a variety of electron-withdrawing groups (see Eq. 5.63).101

O2N

X

Me Li+

 

Me

 

 

HMPA

O2N

X

 

 

+

 

 

Me

 

(5.63)

 

 

 

 

 

Me

NO2

 

 

 

 

 

 

 

 

X = NO2, CN, SO2Ph

 

 

70–90%

 

 

CO2Me, C(O)Ph

 

 

 

 

 

There are many cine substitution reactions of aromatic nitro compounds using various nucleophiles.100 In this chapter, the cine-substitution reactions using the anion of nitroalkanes

148 ALKYLATION, ACYLATION, AND HALOGENATION OF NITRO COMPOUNDS

are summarized. 1-Nitronaphthalene reacts with the anion of nitromethane to give the nitromethylated product, as shown in Eq. 5.64.102 Suzuki and coworkers have extended this reaction to m-dinitrobenzene (Eq. 5.65). Although the reaction proceeds slowly, this is the first example of nitromethylation of monocyclic nitrobenzenes. The reaction of Eq. 5.64 requires additional oxidizing agents to complete the reaction, but that of Eq. 5.65 does not need the external oxidizing agents.103

NO2

 

 

 

 

 

NO2

 

 

 

 

 

 

+ Na+

CH NO

 

1) DMSO

2

 

 

 

 

 

 

 

 

 

2

2) Br2

 

 

 

3) Et3N

 

 

 

35%

NO2

 

 

 

t-BuOLi (8.0 equiv)

 

 

 

 

+

CH3NO2

 

 

 

O2N

 

 

 

O2N

 

 

 

DMI, 24 h

(DMI: 1,3-dimethyl-2-imidazolizinone)

NO2 (5.64)

NO2

NO2

(5.65)

44%

In general, heterocyclic nitro compounds undergo cine substitution reactions more readily than nitrobenzenes. For example, the reaction of 5-acyl- or 5-alkoxycarbonyl-2-nitrofurans with the anion of nitroalkanes gives cine substitution products in excellent yields (Eq. 5.66).104

 

 

 

 

 

 

 

Me Me

 

 

 

Me

+

DMF

 

NO2

EtO

 

+

 

 

 

 

 

(5.66)

NO2

 

Li

 

EtO

O

Me

NO2

 

O

 

 

 

 

O

O

90%

The reaction of 1,2-dimethyl-5-nitroimidazole with 2-nitropropane anion gives the new highly branched imidazole derivative, which is formed via cine-substitution and SRN1 substitution (Eq. 5.67).51b

 

 

 

 

 

 

 

 

Me

Me Me

 

 

N

 

 

 

 

 

 

NO2

 

 

 

Me Bu

N+

toluene-H

O

 

N

 

 

 

 

 

Me

 

Me

N

NO2 +

4

 

2

 

 

(5.67)

Me NO2

 

reflux, 24 h

Me

N

NO2

 

 

 

 

 

Me

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Me

Barton and coworkers have explored the arylation of various nucleophiles including nitroalkanes using bismuth reagents.105 Reaction of 2-nitropropane with triphenylbismuth carbonate gives 2-nitro-2-phenylpropane in 80% yield.106 Recently, this arylation has been used for the synthesis of unusual amino acids. Arylation of α-nitro esters with triphenylbismuth dichloride followed by reduction gives unique α-amino acids (Eq. 5.68).107

NO2

 

 

Ph

NO2

 

DBU

 

OMe

OMe

+ Ph3BiCl2

O

(5.68)

toluene

O

 

Me

O

Me O

77%

5.7 INTRODUCTION OF HETEROATOMS TO NITROALKANES 149

The reaction of 1-nitrocyclohexene with triphenylbismuth dichloride in the presence of triethylamine gives the deconjugated arylated product, as shown in Eq. 5.69.108

NO2

 

O2N

Ph

Et3N

 

 

+ Ph3BiCl2

(5.69)

CH2Cl2

 

 

 

86%

Aryllead triacetates are also good reagents for arylation of stabilized carbanions, including the anion of nitroalkanes (Eq. 5.70).109 As a related reaction, α-vinylation110 or α-acetylation111 of nitro compounds is possible using vinyllead triacetates or alkynyllead triacetates.

 

 

Ph

NO2

PhPb(OAc)3

NO2

(5.70)

DMSO

76%

In recent years, a variety of hypervalent iodine reagents have been available. The versatility of these hypervalent organoiodine reagents in organic synthesis has been well recognized. Diaryliodonium salts constitute an important reagent class for the transfer of aryl groups. These iodonium ion salts have been used effectively in C-arylation of a variety of nucleopohiles.112

The arylation of the anion of nitroalkanes with diaryliodonium salts was already reported in 1963.113

Intramolecular cyclization using palladium-catalyzed arylation of nitro compounds has been reported recently (Eq. 5.71).114

NO2 NO2

PdCl2(PPh3)2

(5.71)

Cs2CO3

O O

O O

Br

58%

Buchwald and co-workers have developed highly active catalysts consisting of bulky, electron-rich phosphine ligands with a biphenyl backbone combined with Pd(OAc)2 for the arylation of ketones or nitroalkanes (Eq. 5.72).115

Me

 

 

 

Me

+ Et

NO2

NaOBut, Pd(OAc)2 (3 mol%)

 

(5.72)

dioxane, 120 ºC, 20 h

 

 

 

 

 

Cl

 

ligand:

Et

NO2

 

 

 

 

Me P(tBu)2

 

76%

5.7 INTRODUCTION OF HETEROATOMS TO NITROALKANES

The anion derived from nitroalkanes react with various electrophiles to give α-hetero-substituted nitroalkanes (Scheme 5.15).116 Halogenation of nitroalkanes is especially well known and very

150 ALKYLATION, ACYLATION, AND HALOGENATION OF NITRO COMPOUNDS

R

NO2

base

R NO2

E+

R

NO2 E+ = Br+, Cl+, I+, F+,

R′

H

 

R′

 

R′

E

PhS+, PhSe+

 

 

 

 

 

Scheme 5.15.

simple, except for fluorination. The widespread interest in halogenated nitro compounds mainly stems from their antimicrobial and insecticide activities.116b

The reaction of α-bromo or α-iodonitroalkanes with sodium benzenesulfinate gives α-nitro sulfones in 85–95% yields (Eq. 5.73), which proceeds via SRN1 reaction (Section 5.4).117

 

R NO2

 

 

 

R NO2

 

 

+ PhSO2Na

 

R′

SO2Ph

(5.73)

R′

I

DMSO

 

 

 

 

 

85–95%

 

 

 

 

 

 

 

α-Nitrosulfones react with various nucleophiles to give the SRN1-alkylated products, as discussed in Section 5.4. α,α-Dinitro compounds, α-nitrosulfones, and α-nitronitriles are prepared in excellent yields when nitroalkane salts are coupled to nitrite, benzensulfinate, and cyanide ions in the presence of potassium ferricyanide (Eqs. 5.74 and 5.75) (see Section 5.4).

R

NO2

 

 

K3Fe(CN)6

R NO2

 

+

NaNO2

 

(5.74)

R′

 

 

R′

NO2

 

 

 

 

 

 

 

 

 

80–90%

 

 

 

 

 

 

 

R

NO2

 

 

 

R NO2

 

+

PhSO2Na

K3Fe(CN)6

 

(5.75)

R′

 

 

R′

SO2Ph

 

 

 

 

 

 

 

 

 

80–90%

 

 

 

 

 

 

 

Bowman has surveyed the reactions of α-substituted aliphatic nitro compounds with nucleophiles, which undergo either SRN1 substitution or polar reaction (Scheme 5.16).118 The reactions

between a wide variety of nucleophiles and BrCH2NO2 are shown in Scheme 5.17.119a–b All the

thiolates,PhSO2

andIattackBrto liberatetheanionofnitromethane.Thehardnucleophiles,MeO,

+

OH

,andBH4 attackthe hard H electrophilic center. Phosphorous nucleophilesattacktheoxygen

electrophilic center, and only Me2S attacks the carbon electrophilic center.

Bromonitromethane is used for the preparation of nitrocyclopropane. The reaction of N-benzylmaleimide and bromonitromethane in the presence of base gives the azabicyclo[3.1.0] hexane ring system. Many bases have been tried to improve the yield; however, amidine base, particularly 1,2-dimethyl-1, 4, 5, 6-tetrahydropyrimidine (DMTHP), gives the best yield

 

 

Me

Br

 

 

Me

 

SET

Me

NO2

 

 

+ Br

 

 

 

Me

 

 

Me NO2

Br

 

 

 

 

 

Me

+ RS

 

 

 

 

 

NO2

Me

 

 

 

 

 

polar

+

PhSBr

 

reaction

 

 

Me

NO2

 

 

 

 

 

Scheme 5.16.

Соседние файлы в предмете Химия