Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

The Nitro Group in Organic Synthesis

.pdf
Скачиваний:
170
Добавлен:
15.08.2013
Размер:
4.69 Mб
Скачать

 

 

 

 

7.2 R–H FROM R–NO2 211

O

 

 

 

HO

H

 

HO

Bu3SnH, AIBN

 

 

 

 

amberlyst A-21

 

NO2

benzene

 

NO2

 

 

 

 

 

 

62 %

 

 

 

 

OH

 

 

 

 

 

1) CrO3

H

 

 

H

2) MeLi

 

 

 

 

 

 

3) SOCl2

Cedrene

 

 

52%

 

 

 

 

80% (3 steps)

 

 

 

 

 

 

Scheme 7.19.

 

 

 

 

H

MgBr

 

Me

O

 

 

 

 

 

CHO

 

 

O2N

 

 

 

 

DBU

 

 

SPh

 

O2N

SPh

 

 

 

 

 

 

 

 

66%

 

HO

 

Bu3SnH, AIBN

 

 

 

 

 

 

 

 

 

HO

O2N

 

SPh

 

55%

 

60%

 

 

 

Scheme 7.20.

7.2.2 Ionic Denitration

Denitration is generally carried out via a radical process using tin hydride, but some nitro groups are replaced by hydrogen via an ionic process. Rosini and coworkers have developed an indirect denitration method of α-nitroketones by the treatment of the corresponding tosylhydrazones with LiAlH4, in which 1,4-elimination of HNO2 and the reduction of tosylazoalkanes to tosylhydrazones occur (Eq. 7.87).134

 

O

 

 

 

 

 

H

 

 

 

 

 

 

 

 

 

 

N

N

 

 

 

 

 

 

R1

 

 

 

R2

 

TsNHNH2

 

Ts

 

 

 

 

LiAlH4

 

 

 

 

 

 

 

R2

 

 

 

 

 

 

 

 

 

 

 

 

 

R1

 

 

 

 

 

0–10 ºC

 

 

 

NO2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NO2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H

 

 

 

 

O

 

 

 

 

N

N

 

 

 

 

 

 

 

 

 

Ts

+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R2

 

H3O

 

R1

 

 

 

 

R2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R1

 

 

 

 

 

 

 

 

 

(7.87)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H

 

 

 

 

 

 

 

H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

212 SUBSTITUTION AND ELIMINATION OF NO2 IN R–NO2

Although this method is not a general procedure, being specific for α-nitroketones, it has several merits to avoid the use of toxic reagents such as organotin compounds. Functionalized ketones have been prepared by this denitration reaction, in which functionalized nitroalkanes are used as alkyl anion synthons. For example, 3-nitropropanal ethylene acetal can be used as

synthon of the 3-oxo-propyl anion and 1,4-dicarbonyl compounds are prepared, as shown in Eq. 7.88.135

O O

NO2

 

O O NO2

 

 

NO

O

 

TsNHNH2

 

O

O

2

 

H

 

H

 

H

 

 

H

 

 

 

 

NNHTs

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

93%

 

 

 

 

 

 

 

 

 

 

 

 

 

O O

 

O

 

 

 

LiAlH4

1) TsOH

 

 

 

 

H

H

 

 

 

 

 

2) BF3

 

 

(7.88)

 

 

NNHTs

 

O

 

 

 

 

 

 

 

 

 

94%

 

 

85%

 

 

(Z)-1-Nitro-3-nonene is converted into a pheromone, (Z)-5-undecen-2-one, via nitro-aldol reaction (see Section 3.2.3), followed by oxidation, and denitration, as shown in Eq. 7.89.136

 

 

NO2

 

 

 

 

 

 

 

 

NO2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

79%

O

 

 

 

 

 

 

 

1) TsNHNH2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2) LiAlH4

 

 

 

 

 

 

 

 

(7.89)

3) H O+

 

 

 

O

 

 

 

3

 

 

 

70–80%

 

 

 

The simultaneous denitration-deoxygenation of α-nitroketones is performed on treatment with TsNHNH2 and NaBH4 at 80 °C to give alkanes (Eq. 7.90).137

O

 

 

1) TsNHNH2

 

 

 

(7.90)

 

 

2) NaBH4, 80 ºC

 

 

 

NO2

71%

 

 

The nitro groups in Eqs. 7.88–7.90 are readily replaced by hydrogen with tin hydride under radical conditions as discussed already. However, the nitro groups in the α-nitrosulfides or β-nitrosulfides are not replaced by hydrogen on treatment with tin hydride but the reaction affords desulfonated products (Eq. 7.51) and alkenes (Eq. 7.97) such radical elimination reactions are discussed in Section 7.3.1. (see Eqs. 7.91 and 7.92).138

SPh Bu3SnH NO2

NO2

AIBN

H

(7.91)

 

80%

 

SEt

 

 

 

NO2

Bu3SnH

OH

(7.92)

 

AIBN

 

93%

 

OH

 

 

 

 

 

7.2 R–H FROM R–NO2 213

The nitro groups of α- or β-nitrosulfides are cleanly replaced by hydrogen via ionic hydrogenation to give sulfides, as shown in Eqs. 7.93–7.95. The attack of hydride takes place at the more substituted carbon.139

 

 

 

SPh

 

Et3SiH

 

 

 

 

 

 

 

SPh

 

 

 

 

 

 

 

 

 

 

 

 

(7.93)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SnCl4

 

 

 

 

 

 

 

 

 

NO2

 

94%

H

 

 

SPh

 

Et3SiH

 

 

 

SPh

 

 

 

 

 

 

 

 

 

 

 

 

 

(7.94)

 

 

 

 

 

 

 

 

 

 

 

 

 

NO2

 

AlCl3

89%

 

 

 

 

 

 

 

 

 

 

 

 

 

O2N

 

Et3SiH

 

 

 

 

 

SPh

 

 

 

 

 

 

 

 

 

 

 

 

 

(7.95)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SPh

 

AlCl3

70%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The difficulty in controlling the regiochemistry during radical-denitration of allylic nitro compounds is well known. The migration of the double bond is a serious problem, as shown in Eq. 7.96. This problem is overcome by a hydride transfer reaction in the presence of a palladium catalyst (Eq. 7.97).140

 

 

 

CO2Me

Bu SnH

 

 

CO2Me

 

CO2Me

 

 

 

 

 

 

3

 

 

 

 

+

 

 

 

(7.96)

 

NO2

 

 

AIBN

 

 

 

 

 

 

 

 

 

70% (15:85)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

 

 

 

 

 

 

R

 

 

 

Pd(0)

 

 

 

 

 

 

H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

or

R

 

 

 

- NO2

 

 

 

 

 

 

 

 

 

NO

 

 

Pd

 

 

H: HCO2NH4,

 

 

2

 

 

 

 

 

 

 

 

 

NaBH3CN, NaBH4

 

(7.97)

 

 

 

 

 

 

 

 

 

 

 

 

The regiochemical control of Pd-catalyzed hydride transfer reaction is much more effective than that of the radical denitration, as shown in Eq. 7.98. The base-catalyzed reaction of nitroolefins with aldehydes followed by denitration provides a new synthetic method of homoallyl alcohols (Eq. 7.99).140 Exomethylene compounds are obtained by denitration of cyclic allylic nitro compounds with Pd(0), HCO2H and Et3N (Eq. 7.100).140b

 

 

 

 

 

 

 

Pd(PPh3)4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H

Yield (A/B)

 

 

 

 

CO2Me

 

H

 

 

 

 

NO2

 

 

 

 

 

 

 

 

+

 

 

 

 

 

 

NaBH4

70% (3/97)

(7.98)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CO2Me

 

 

 

 

CO2Me

 

HCO2NH4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A

 

 

 

 

 

 

B

 

60% (90/10)

 

 

 

 

 

 

 

 

 

 

 

 

Me

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

 

35% HCHO

R

 

OH

NaBH4

 

Me

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

OH

 

 

 

 

 

Et3N

 

 

 

NO2

 

Pd(0)

 

 

 

 

NO2

 

 

 

 

 

 

 

(7.99)

 

 

 

 

 

 

 

 

 

80–90%

 

 

 

86%

214 SUBSTITUTION AND ELIMINATION OF NO2 IN R–NO2

NO2

HCO2H, Et3N, THF

 

 

 

+

 

 

 

(7.100)

 

 

 

 

 

 

Pd(acac)2, Bu3P

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

45 ºC, 16 h

 

 

 

 

 

 

 

 

 

89% (86:14)

 

 

 

 

 

 

 

 

 

This denitration of allylic nitro compounds catalyzed by Pd(0) is applied to total synthesis of kainic acid, as shown in Eq. 7.101. The tandem Michael addition of a nitrogen nucleophile to nitrodiene gives the requisite framework. The radical denitration does not give the desired product, but it gives a mixture of regioand stereoisomer. On the other hand, the Pd(0)-mediated denitration proceeds with high regioand stereoselectivity.141 In a similar way, other proteinogenic amino acids having a pyrrolidine dicarboxylic acid ring are prepared (Eq. 7.102).142

 

 

 

 

CO2Et

 

 

 

Bn

 

 

 

 

NO2

 

 

 

 

 

N

 

 

 

 

+

H

EtOH

 

 

OH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O2N

 

 

 

 

 

OBz

 

HO

Yt · 15h

 

 

 

 

 

 

 

 

NHBn

 

 

 

CO2Et

 

 

 

 

 

 

 

Bn

 

 

 

H

 

 

 

 

 

 

 

 

 

88%

 

 

 

 

 

 

N

 

 

 

N

 

 

 

Pd(0), HCO2NH4

OH

 

 

 

OH

 

 

THF

 

 

H

 

 

 

 

 

 

(7.101)

 

 

 

 

CO2Et

 

 

 

 

CO2H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

100%

 

 

 

(–)-α-kainic acid

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PMB

 

 

 

 

CO2Et

 

 

PMB

 

 

MeO

C N

O

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

MeO2C N O

EtOH

 

 

 

NO2

CO

Et

 

+

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

HN

H

 

 

NO2

RT

 

 

 

 

CH2OH

CH2OH

 

 

 

 

 

 

 

N

Bn

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bn

 

 

 

 

 

 

 

PMB

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MeO2C

N O

 

 

 

80%

 

 

 

 

 

Pd (0)

 

 

CO2Et

 

 

 

 

 

 

HCO2NH4

 

 

 

 

 

 

(7.102)

 

 

 

THF

 

N

CH2OH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bn 90%

7.3 ALKENES FROM R–NO2

Elimination of the NO2 group via radical process or via ionic process from aliphatic nitro compounds affords a useful method for the preparation of olefins. Nitro compounds, with two radical leaving groups at vicinal positions, are prone to undergo radical elimination to give olefins. The nitro group at a β-position with respect to an electron-withdrawing group is readily eliminated to give α,β-unsaturated compounds on treatment with a base (Scheme 7.21).

7.3.1 Radical Elimination

In 1971, Kornblum and coworkers reported a new synthesis of tetra-substituted alkenes from vicinal dinitro compounds.143 The requisite vicinal dinitro compounds are prepared by the

7.3 ALKENES FROM R–NO2 215

X Reagent

+ X

O2N

X = NO2, SO2Ar, SAr, OC(S)R

Reagent: Na2S, Ca/Hg, NaTeH, Bu3SnH + AIBN

 

Y + Base

 

+ NO2Base H+

 

 

O2N

H

 

Y

Y = CO2R, CHO, C(O)R, SO2R

Scheme 7.21.

oxidation of the anion derived from nitroalkanes. Unsymmetrical dinitro compounds are

prepared by the reaction of geminal dinitro compounds with nitroalkane salts (see Eqs. 7.103 and 7.104).143

NO2

 

I2

 

O2N NO2

 

Na2S

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DMF

 

 

 

DMF

 

 

 

(7.103)

 

 

 

 

 

 

 

 

 

 

90%

 

 

 

 

95%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NO2

 

Me Me

DMF

O2N NO2

Na2S

 

Me

 

+

 

 

 

Me

 

 

 

O2N NO2

 

 

 

 

DMF

 

Me

 

 

 

 

 

Me

 

 

 

 

 

 

 

 

90%

 

 

 

91% (7.104)

Because sodium sulfide is a strong nucleophile, other non nucleophilic reagents such as Ca/Hg 144 or Bu3SnH145 are more suitable than Na2S in the synthesis of functionalized olefins (see Eq. 7.105). NaTeH is also effective to induce the elimination reaction presented in Eqs. 7.103 and 7.104.146

 

 

 

NO2

 

Me CH2CH2CO2Me

 

 

 

 

 

Me

 

 

 

CH2CH2CO2Me

 

Ca/Hg, DMF, HMPA: 84%

 

 

 

 

 

Me

 

 

 

CH2CH2CO2Me

 

Me CH2CH2CO2Me

Bu3SnH, AIBN: 84%

 

 

 

 

 

NO2

 

(7.105)

 

 

 

Vasella and coworkers have used this radical elimination for the chain elongation of 1-C-nitroglycosyl halides.147 The requisite 1-C-nitroglycosyl chlorides and bromides are easily available from sugar oximes.148 Treatment of 1-C-nitromannosyl chloride with the potassium salt of 2-nitropropane gives the vicinal dinitro sugar in 81% yield. Reduction of this dinitro sugar with Na2S gives the enol ether in 96% yield (see Eq. 7.106).

 

 

Me Li+

 

 

 

O O

 

O O

 

Me NO2

O O

NO2

Na2S

Me

 

O O O

O O O

 

O O O

NO2

 

DMF

Me

 

 

 

NO2

 

 

 

Cl

 

 

 

 

 

Me Me

 

96%

(7.106)

 

 

 

 

Because anions of nitro compounds are good electron-transfer reagents, they can serve as reducing agents in radical type eliminations of vicinal dinitro compounds. In fact, N-azolyl-sub-

216 SUBSTITUTION AND ELIMINATION OF NO2 IN R–NO2

stituted olefin is spontaneously formed by an SRN1 reaction of the anion derived from gemnitroimidazolylethane with gem-chloronitropropane (Eq. 7.107).149 Similar sequential SN1 reaction followed by radical elimination is observed in the reaction of 1-methyl-2-trichlo- romethyl-5-nitroimidazole with the anion of 2-nitropropane (see Eq. 7.108),150a or difluoromethyl quinone (see Eq. 7.109).150b The main product of Eq. 7.109 is substitution product, but it can be converted to 2,3,5-trimethyl-6-(2-methyl-1-propenyl)benzo-1,4-quinone on treatment with the anion of 2-nitropropane.

 

 

 

 

 

 

 

 

 

 

80%

 

 

 

 

 

O2N

N

 

 

 

 

 

 

 

O2N

N

 

 

 

O2N

N

 

 

Me

Me

DMF

 

 

 

 

 

 

 

 

 

 

N

NO2

 

 

 

N

Me

 

N

+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O2N

Cl

 

 

 

 

Me

Me

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Me

Me

Me

NO2

 

 

 

 

 

 

 

 

O N

Me

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

58%

(7.107)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Me

O2N

N

 

 

 

 

 

 

 

N

 

 

 

 

Li+

 

 

 

 

 

 

 

 

 

Me

NO2

 

 

N

Me

 

 

 

 

 

O2N

N

CCl3

 

 

 

 

 

 

(7.108)

 

 

(3 equiv)

Me

Cl

Me

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Me

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

76%

 

 

 

 

 

 

 

O

 

 

 

Me Li+

 

O

F

 

 

O

 

 

Me

 

CHF2

 

 

 

 

Me

 

Me

Me

 

Me

 

Me

NO2

 

Me

 

 

 

 

 

 

 

 

+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NO2

 

 

Me

 

Me

 

Me

 

 

 

 

Me

 

Me

 

 

 

 

 

 

 

 

Me

 

Me

 

 

O

 

 

 

 

 

 

 

 

O

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

A

83% (A : B = 89 : 11)

B

 

(7.109)

 

 

 

 

 

 

 

 

 

 

 

 

 

Ono and coworkers have extended the radical elimination of vic-dinitro compounds to β-nitro sulfones151 and β-nitro sulfides.138,152 As β-nitro sulfides are readily prepared by the Michael

addition of thiols to nitroalkenes, radical elimination of β-nitrosulfides provides a useful method for olefin synthesis. For example, cyclohexanone is converted into allyl alcohol by the reaction shown in Eq. 7.110. Treatment of cyclohexanone with a mixture of nitromethane, PhSH, 35%-HCHO, TMG (0.1 equiv) in acetonitrile gives a hydroxymethylated-β-nitro sulfide in 68% yield, which is converted into the corresponding allyl alcohol in 86% yield by the reaction with Bu3SnH.138 Nitro-aldol and the Michael addition reactions take place sequentially to give the required β-nitro sulfides in one pot.

 

CH3NO2, PhSH, HCHO

 

O

 

TMG (0.1 equiv), MeCN

NO2

Bu3SnH, AIBN

OH

 

(7.110)

SPh

benzene

OH

 

 

86%

68%

 

 

 

Tin radical-induced elimination from β-nitro sulfones or β-nitro sulfides proceeds in a stereoselective way to give anti elimination products.153 When diastereomers of β-nitro sulfones can be separated, each diastereomer gives (E)- and (Z)-alkenes selectively (Eq. 7.111). Such

7.3 ALKENES FROM R–NO2 217

stereo-specific radical elimination is rather unusual because usually radical reactions proceed in a nonspecific way.

 

 

 

 

 

 

Et

Me

 

O2N

 

Me

Bu3SnH

 

 

 

Et

 

 

CN

 

Me

CN

 

 

 

AIBN

 

Me

 

SO2Ar

(E) only

 

 

benzene

 

 

 

 

 

 

 

86%

 

 

 

 

 

 

 

 

(7.111)

 

 

 

 

 

 

Me

Me

 

 

 

 

 

 

 

O2N

 

Me

Bu3SnH

Et

CN

 

Me

 

 

CN

 

 

 

 

 

 

AIBN

 

Et

 

SO2Ar

(Z) only

 

 

benzene

 

 

 

 

 

 

 

 

85%

 

Stereoselective preparation of (E)-allyl alcohols via radical elimination from anti-γ- phenylthio-β-nitro alcohols has been reported.154 The requisite anti-β-nitro sulfides are prepared by protonation of nitronates at low temperature (see Chapter 4), and subsequent treatment with Bu3SnH induces anti elimination to give (E)-alkenes selectively (see Eq. 7.112). Unfortunately, it is difficult to get the pure syn-β-nitro sulfides. Treatment of a mixture of synand anti-β- nitrosulfides with Bu3SnH results in formation of a mixture of (E)- and (Z)-alkenes.

Ph

1) PhSLi

 

NO2

OH Bu3SnH, AIBN

Ph

OH

Ph

 

 

NO2

2) HCHO

 

 

 

benzene

E / Z = 95 / 5

 

 

 

 

3) –78 ºC, AcOH

SPh

 

 

 

 

 

 

 

 

(7.112)

 

 

 

 

 

 

 

Ono and coworkers have devised a new acetylene equivalent for the Diels-Alder reaction; namely, 1-phenylsulfony-2-nitroethylene is a very reactive dienophile, and the radical elimination from the adduct gives the Diels-Alder adduct of acetylene, as exemplified in Eq. 7.113.155 Other acetylene equivalents are summarized in a review.156

 

 

O2N

SO2Ph

 

toluene

Bu3SnH, AIBN

 

 

+

110 ºC, 3 h

 

benzene

PhO2S

NO2

90%

60%

 

 

(7.113)

Acetylene equivalent of β-sulfonylnitroalkene in the Diels-Alder reaction is used in part for total synthesis of pancratistatin (Eq. 7.114). Pancratistatin is isolated from the root of the plant Pancratium littorale Jacq., native to Hawaii, which exhibits anti-cancer activity.157

 

 

 

 

 

t-Bu

Me

 

 

 

 

 

 

Si

O

 

Me

 

 

 

Me

O

 

 

 

 

 

 

t-Bu

 

 

 

O

 

 

Si

 

SO

Ph

 

NEt2

 

 

 

 

Me

O

O

2

 

 

 

 

 

+

 

 

O

 

 

O

 

 

 

 

 

 

NEt2

O2N

 

 

 

 

 

 

 

 

O2N

 

O

 

 

 

 

 

 

 

 

 

 

 

 

SO2Ph

 

 

 

 

 

 

 

96%

218 SUBSTITUTION AND ELIMINATION OF NO2 IN R–NO2

 

 

 

 

t-Bu

Me

 

 

OH

 

 

Si

O

 

HO

OH

 

Me

O

 

H

 

 

 

 

 

 

Bu3SnH

O

 

 

O

 

 

NEt2

 

OH

AIBN

 

 

 

H

 

 

 

 

 

toluene

O

 

 

O

NH

 

 

 

 

 

 

 

 

 

 

OH O

(7.114)

 

 

72%

 

 

pancratistatin

 

Nitro-aldols, which are readily available (see Henry reaction Section 3.1), are converted into olefins via conversion of the hydroxyl group to the corresponding phenyl thiocarbonate ester and treatment with tin radical.158 The yield was not reported. Because the radical deoxygenation via thiocarbonate (Barton reaction) proceeds in good yield, the elimination of Eq. 7.115 might be good choice for olefin synthesis.159

 

OBn

S

 

BnO OBn

 

BnO

C

 

O

 

 

 

 

 

 

O

O

Ph

Bu3SnH

BnO

 

BnO

 

NO2

BnO

(7.115)

 

 

AIBN

 

BnO BnO

O

BnO

O

 

 

 

 

BnO

 

 

BnO

 

 

 

 

BnO OMe

 

 

BnO OMe

Due to the toxicity of tin reagents, a new radical elimination without using Bu3SnH is highly desirable. Barton has reported that nitro olefins are converted into olefins via radical elimination of β-nitro trithiocarbonates (Eq. 7.116).160 The Michael addition of trithiocarbonate to nitroalkenes is carried out in CS2 to avoid the addition of EtSH.

S

 

O

NO2

N

NO2

O

 

EtS S

 

S

CS2

S

S

SEt

79%

 

(7.116)

7.3.2 Ionic Elimination of Nitro Compounds

In a previous review dealing with β-elimination reactions of nitrous acid, the literature is covered up to 1985.161 The basic concept is very simple: the nitro group at the β-position of the electron-withdrawing groups is eliminated to give alkenes on treatment with base. A typical example is shown in Scheme 7.22; electrophiles can be introduced to ethyl β-nitropropionate at both α- and β-positions, and subsequent elimination of HNO2 gives various alkenes. The Henry reaction or Michael reaction of ethyl β-nitropropionate followed by elimination of HNO2 gives β-substituted acrylate.162 On the other hand, alkylation of the dianion derived from the

same compound followed by elimination of HNO2 gives α-substituted acrylate (Eqs. 7.117 and 7.118).163

 

 

N

 

OH

(7.117)

n-C6H13CHO +

O2N

H

 

 

 

 

 

DMSO

n-C5H11

 

CO2Et

 

CO2Et

 

55%

 

 

 

 

7.3

ALKENES FROM R–NO2

219

 

 

 

 

O2N

 

 

 

E

Et

 

 

 

 

 

 

 

CO

 

 

 

 

CO2Et

 

 

 

 

2

 

 

 

 

base

 

 

 

 

 

 

α,β-unsaturated

 

 

 

E

 

 

 

O2N

 

 

 

 

 

 

compounds

 

 

 

 

 

 

 

 

 

 

 

 

 

CO2Et

 

 

 

 

 

 

 

 

 

 

β

 

2LDA

 

 

 

 

 

 

 

 

 

α

E

 

 

 

E

 

 

 

 

 

 

 

 

 

 

 

 

 

O2N

 

 

 

 

 

CO2Et

 

 

 

 

 

 

 

 

 

 

 

 

 

CO2Et

 

 

 

 

 

 

 

Scheme 7.22.

 

 

 

 

 

O2N

 

CO2Me

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LDA

 

THF-HMPA

 

R

DBU

 

 

R

 

 

 

 

 

 

RX

O2N

 

 

 

 

 

 

 

 

 

 

 

 

CO2Me

 

 

 

 

 

 

 

 

OLi

 

CO2Me

 

 

 

 

 

 

66–80%

 

 

 

85–90%

 

 

 

 

 

 

 

 

 

O2N

 

OMe

RCHO

HO R

 

 

 

HO R

(7.118)

 

 

DBU

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O2N

 

 

 

CO2Me

 

 

 

 

CO2Me

 

 

 

 

 

 

 

48–84%

 

 

 

 

 

The alkylation of dianion of methyl 3-nitropropionate requires 5 equiv of HMPA. HMPA is a listed mutagen and should not be used in industry or in academia. 1,3-Dimethyl-3,4,5,6-tetra- hydropyrimidine (DMPU)164 and quinuclidine N-oxide (QNO)165 are recommended as replacements of HMPA (Eq. 7.119).

 

 

 

 

O

Additive (equiv)

Yield (%)

 

O

 

 

None

8

 

LDA, THF, –78 ºC

 

 

 

 

 

 

O N

OMe

 

O2N

OMe

HMPA (5)

85

 

PhCH2Br

 

 

 

2

 

 

 

Ph

DMPU (10)

85

 

 

 

 

 

 

 

 

QNO (5)

78

 

 

 

 

 

 

 

 

 

 

 

(7.119)

The reaction shown in Eq. 7.120 has been applied to a total synthesis of (+)-brefeldin-A.166

R1O

CHO

CO2Me

N

OR2

+

H

 

 

DMSO

 

 

O2N

 

 

 

 

OH

 

OH

 

 

O

R1O

OMe

HO

O

2

 

 

OR

 

H

 

O

 

 

 

 

(+)-Brefeldin-A

 

54%

 

(7.120)

Esters and ketones bearing β-nitro groups can be prepared in many ways. For example, the Diels-Alder reaction of methyl β-nitroacrylate is one typical case. Various cyclic dienes are prepared by this route, and the reactions of Eq. 7.121167 and Eq. 7.122168 are exemplified.

220 SUBSTITUTION AND ELIMINATION OF NO2 IN R–NO2

 

 

 

 

NO2

 

 

 

 

 

 

MeO

+

 

benzene

 

 

 

 

 

 

 

RT

 

 

 

 

Me3SiO

 

 

O

 

 

 

 

 

 

 

 

 

 

NO2

 

 

 

 

 

 

 

 

DBU

 

 

 

 

 

 

 

O

CO2Me

 

O

CO2Me

 

(7.121)

 

72%

 

 

 

99%

 

 

(7.122)

Another approach is the Michael addition to ethyl β-nitroacrylate, as shown in Eq. 7.123, which has been used in the synthesis of α-methylenebutyrolactone, a moiety characteristic of many sesquiterpenes.169

(7.123)

The Michael addition of nitroalkanes to alkenes substituted with two electron-withdrawing groups at the α- and β-positions provides a new method for the preparation of functionalized alkenes. Although reactions are not new,170 Ballini and coworkers have used this strategy in the synthesis of polyfunctionalized unsaturated carbonyl derivatives by Michael addition of nitroalkanes to enediones as shown in Eqs. 7.124–7.126.171 Success of this type of reaction depends on the base and solvent. They have found that DBU in acetonitrile is the method of choice for this purpose. This base-solvent system has been used widely in Michael additions of nitroalkanes to electron-deficient alkenes (see Section 4.3, which discusses the Michael addition).172

(7.124)

(7.125)

Соседние файлы в предмете Химия