Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

The Nitro Group in Organic Synthesis

.pdf
Скачиваний:
170
Добавлен:
15.08.2013
Размер:
4.69 Mб
Скачать

6.3 REDUCTION OF NITRO COMPOUNDS INTO AMINES 171

N-O cleavage

Ar NO2 Ar-NO, Ar-NH2, etc.

 

 

N-O cleavage

R-NO, R-NHOH, R-NH2, etc.

 

 

 

R

 

NO2

R-H

 

 

 

C-N cleavage

Scheme 6.4.

Procedures for the reduction of nitro compounds to amines are described precisely in the

series of books; Organic Synthesis, namely, Fe + AcOH,72 Zn + NaOH,73 Fe + HCl,74 Sn + HCl,75 H2-Raney Ni,76a–c H2-PtO2,77 H2-Pd/C,78 and N2H4-Pd/C79 are presented there. Sodium

sulfide and polysulfides are also effective for this transformation.80 The combination of sodium borohydride with cobalt(II), copper(II), and rhodium (III) halides has been used to reduce functional groups such as nitro, nitriles, amides, and olefins, which are inert to NaBH4 itself.81 Aromatic nitro compounds are reduced to amines with formic acid and triethylamine with Pd/C.82a Ammonium formate in the presence of Pd/C is a very convenient method for the reduction of both aromatic and aliphatic nitro compounds. For example, this method is applied for the preparation of indoles, as in Eq. 6.42.82b Synthesis of indoles via the reduction of the nitro group is presented in Section 10.2 (synthesis of heterocycles).

MeO

OMe

MeO

 

CO2Me

 

 

 

10 % Pd/C

 

N

(6.42)

O O

HCOONH4

 

 

 

NO2

 

 

H

 

 

 

 

84–89%

 

The reductive alkylation of aromatic nitro compounds using H2+Pd/C in the presence of 40% aqueous formaldehyde gives directly dimethylamino derivatives in good yield (Eq. 6.43).83

O2N

 

 

 

 

 

 

 

CH2COOEt

CH2O, H2

Me2N

 

 

 

 

 

CH2COOEt

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(6.43)

 

 

 

 

 

 

 

Pd/C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

67–77%

 

 

 

 

 

 

 

 

 

 

 

 

 

Electrochemically generated nickel is very selective for the reduction of aromatic nitro compounds into anilines, in which alkenyl, alkynyl, halo, cyano, formyl, and benzyloxy groups are not affected.84 Sodium sulfide has been used for the selective reduction of aromatic nitro group in the presence of aliphatic nitro groups (Eq. 6.44).85

 

 

 

 

 

 

 

 

 

Me

Na2S9H2O

H2N

 

 

 

 

 

 

 

CH2

Me

Me

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Me

 

 

 

 

 

 

 

C

 

O2N

 

 

 

 

 

 

 

CH2

C

 

 

 

 

 

 

 

 

 

EtOH-H2O

 

 

 

 

 

 

 

 

 

 

 

 

(6.44)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NO2

 

 

 

 

 

 

 

 

 

NO2

 

 

 

70%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Treatment of aromatic nitro compounds with indium powder in aqueous ethanolic ammonium chloride results in selective reduction of nitro groups; ester, nitrile, amide, and halide substituents are unaffected.86 This method is more selective than the method of catalytic hydrogenation. For example, catalytic hydrogenation of 4-chloro-3-nitroacetophenone over Pd/C results in hydrogenolysis of the halide and reduction of the ketone as well as of the nitro group.87 Samarium iodide is a good reducing agent of both aromatic and aliphatic nitro

172 CONVERSION OF NITRO COMPOUNDS INTO OTHER COMPOUNDS

compounds. Because the nitro group is a better electron acceptor than other functional groups, the reduction of nitro compounds with SmI2 proceeds selectively. Thus, p-nitrobenzonitrile is reduced to p-cyanoaniline selectively.88 Ultrasound-promoted, highly efficient reduction of aromatic nitro compounds to the aromatic amines has been achieved by samarium ammonium chloride mediated reaction.88c Intermolecular and intramolecular reductive coupling reactions between aromatic nitro compounds and nitriles are induced by SmI2 to give amidines and 2-aminoqunolines.89

6.3.2 R-NH2 From R-NO2

In general, the reduction of aliphatic nitro compounds gives amines, in which various reducing agents are as effective as they are in the reduction of aromatic nitro compounds.70 The reduction of β-nitro alcohols to the corresponding amino alcohols is the most important application of this process in organic synthesis. Hydrogenation catalyzed by Raney Ni under high pressure has been widely used for this conversion,90 and some recent examples are presented in Eq. 6.45,91 and Eq. 6.46.92 The stereochemistry of the nitro alcohol is retained by the Raney Ni-catalyzed hydrogenation.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OH

 

 

 

 

 

SiO

 

 

CF3

 

1) H2, Raney Ni

 

 

 

 

 

 

CF3

(6.45)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2) Bu4NF

 

 

 

 

 

NH2

 

 

 

 

 

 

 

 

 

NO2

 

 

76%

 

 

 

 

 

 

 

 

 

 

 

 

 

SiO

 

1) H2, Raney Ni

 

 

 

 

 

OH

 

 

 

 

 

 

 

 

C3H9

 

Et

(6.46)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Et

 

2) Bu4NF

 

 

NH2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C3H9

 

 

 

 

 

 

 

 

 

NO2

The reduction of nitro sugars with H2 in the presence of Raney Ni is one of the standard methods for the preparation of amino sugars (Eq. 6.47).93

 

OMe

OMe

 

 

O

 

H2, Raney Ni

O

 

 

(6.47)

 

1 atm, 25 ºC, 4 h

HO NO2

 

HO NH2

 

 

73%

 

 

 

The hydrogenation in the presence of Pd/C is also effective for the conversion of nitro compounds to amines.94 The Michael addition of nitromethane to 2-alkenoic esters followed by catalytic hydrogenation using 10% Pd/C in acetic acid and hydrolysis is a convenient method for the preparation of 3-alkyl-4-aminobutanoic acids, which are important γ-amino acids for biological study (Eq. 6.48).94b The reduction can be carried out at room temperature and atmospheric pressure.

O2N

 

 

H2N

O

 

1) H2, Pd/C, AcOH

 

 

O

 

 

 

 

(6.48)

 

 

 

 

 

 

 

 

 

Me

 

 

 

 

2) HCl

Me

 

 

OH

OEt

 

 

 

 

83%

6.3 REDUCTION OF NITRO COMPOUNDS INTO AMINES 173

Jager and co-workers have prepared various amino sugars by the reduction of the corresponding β-nitro alcohols with H2 and Pd/C, as exemplified in Eq. 6.49 (see Chapter 3).95

OH OH OEt

 

OH OH OEt

 

H2, Pd, MeOH

 

 

 

OEt

(6.49)

 

 

 

OEt

 

 

 

 

 

 

 

 

 

25 ºC, 24 h

 

OH NH2

 

OBn NO2

 

 

 

 

98%

 

 

 

 

 

 

 

 

 

Hydrogen gas can be replaced by ammonium formate for the reduction of nitro compounds to amines. The ammonium formate method is efficient, and the rapid workup procedure by simple filtration makes it widely used for converting the NO2 to the NH2.96 For example, α-nitro esters are reduced to α-amino esters in excellent yields on treatment with HCO2NH4 and Pd/C in methanol.96

The reduction of γ-nitroketone acetals as in Eq. 6.50 with ammonium formate in the presence of Pd/C gives the corresponding amines in good yields. However, the reduction of γ-nitro ketones are reduced to cyclic nitrones (Eq. 6.51).97 This reduction is far superior to the classical method using Zn/NH4Cl due to improved yield and simple workup.

 

 

O O

HCO2NH4, Pd/C

Me

 

 

 

 

O O

 

Me

 

 

 

 

 

 

 

CO2Me

 

 

 

 

 

 

 

 

 

 

 

 

CO2Me

60 ºC, 1 h

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NO2

 

 

 

 

NH2

(6.50)

 

 

 

 

 

 

 

 

 

 

 

 

 

94%

 

 

O

 

 

 

 

 

O

 

 

 

 

 

 

 

HCO2NH4, Pd/C

 

 

 

 

+

 

Me

 

 

 

Me

 

 

N

CO2Me

 

 

 

 

 

 

 

 

 

 

 

CO2Me

20 ºC, 30 min

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NO2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

74%

(6.51)

 

 

 

 

 

 

 

 

 

The reduction of β-nitro alcohols with ammonium formate in the presence of Pd/C also proceeds with retention of their configurations (Eq. 6.52).98

OH

 

 

 

OH

 

Me

HCO2NH4, Pd/C

 

 

Me

 

 

 

 

 

 

MeOH

 

 

(6.52)

 

NO2

 

 

NH2

 

 

 

 

20 ºC

 

 

 

 

 

 

 

 

 

 

87%

The reduction of β-nitro alcohols with LiAlH4 results in low yields of β-amino alcohols due to the occurrence of a retro-aldol reaction. This problem is resolved by protecting of OH of β-nitro alcohols, as shown in Eq. 6.53.99

 

 

OH

O Si

LiAlH4

(6.53)

 

 

 

 

NH2

NO2

 

69%

A reagent of nickel boride/hydrazine hydrate reduces both aromatic and aliphatic nitro compounds. For example, it has been used for synthesis of 4-(benzyloxy)indole and –alkyltryp-

174 CONVERSION OF NITRO COMPOUNDS INTO OTHER COMPOUNDS

tamines, as shown in Eq. 6.54.100 This reducing agent has advantages over the method using H2 and Raney Ni because double bonds are inert to Ni2B/N2H4.

OCH2Ph

 

 

OCH2Ph

NO2

 

 

Ni2B

 

 

Me

 

 

N

 

 

 

 

 

N2H4H2O

 

N

 

 

 

NO2

 

 

H

 

 

 

 

 

91%

 

 

 

 

OCH2Ph

NO2

Ni2B

OCH2Ph

NH2

 

 

 

Me

 

Me

(6.54)

 

 

N2H4H2O

 

 

 

 

 

 

N

 

 

N

 

 

 

H

 

 

H

 

 

 

81%

 

 

69%

 

 

Sodium borohydride is activated in the presence of Pd/C,101 CoCl26H2O,102 Ni(OAc)2,103 CuSO4,104 and NiCl2.105 Aromatic and aliphatic nitro compounds are reduced to the corresponding amines, by these reagents as summarized in Table 6.1. The active hydrogenation catalyst is formed by the reaction of NaBH4 with metal catalysts in such reductions.106 Because reaction proceeds rapidly under mild conditions, the method using activated NaBH4 is very convenient for the reduction of a variety of nitro compounds as shown in Table 6.1.

Various other reducing methods are employed for the conversion of β-nitro alcohols to amino alcohols, namely, electrochemical reduction.107 The selective electrohydrogenation of nitroaliphatic and nitroaromatic groups in molecules containing other groups that are easy to hydrogenate (triple bond, nitrile, C-I) are carried out in methanol-water solutions at Devarda copper and Raney cobalt electrodes (Eq. 6.55).107

Me

 

 

NHOH

OEt

pH = 3

Me

NO2

OEt

pH = 5

Me

NH2

OEt

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OEt

–0.70 V

 

 

 

OEt

–0.90 V

 

 

 

OEt

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Me

(vs. SCE)

 

Me

(vs. SCE)

 

Me

65%

 

 

 

 

 

 

 

72%

 

 

 

 

 

 

 

 

 

 

 

 

 

(6.55)

The sonochemical-promoted aluminum amalgam reduction of β-nitro alcohols provides an improved yield and accelerated conversion to the corresponding amino alcohols.108

The selective reduction of 4-nitrosteroid to the corresponding aminosteroid has been carried out by Pd/CaCO3 and quinoline (5 mol wt%) under H2 atmosphere (Eq. 6.56).109 This is the first reported catalytic reduction of an α-nitro enone to an α-amino enone. Other hydrogenation catalysts as well as the use of Na2S, Fe/AcOH, or Na2S2O4 fails to provide the aminosteroid. Reduction with SnCl2 in EtOH gives the aminosteroid in 46% yield.

 

OH

 

OH

 

 

 

 

 

H2, Pd/CaCO3

(6.56)

 

 

quinoline

 

 

 

O

 

 

O

 

 

NH2

NO2

 

 

 

 

64%

A variety of Group VIII transition metal phosphine complexes are shown to be active catalysts for hydrogenation of aliphatic nitro compounds. However, chiral phosphines have been found to be noneffective to induce asymmetric induction.110

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.3 REDUCTION OF NITRO COMPOUNDS INTO AMINES

175

Table 6.1.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Nitro compound

Reducing reagent

 

 

 

 

 

 

Product

Yield (%)

Ref.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NO2

NaBH4-CuSO4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NH2

80

104

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OMe

EtOH, reflux, 30 min

 

 

 

 

 

 

 

 

 

 

OMe

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OMe

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OMe

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NO2

NaBH4-exchange

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NH2

94

103

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Resin-Ni(OAc)2, RT, 1 h

 

 

 

 

 

 

 

 

 

 

 

NH2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NO2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NaBH4-10% Pd/C

 

 

 

 

 

 

 

 

 

 

 

 

75

103

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CO2Et

THF, 40 min

 

 

 

 

 

 

 

 

 

 

 

 

 

CO2Et

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NO2

NaBH4-10% Pd/C

 

 

NC

 

 

 

 

 

 

 

 

 

 

 

NH2

90

103

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

THF, 30 min

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O2N

 

 

 

NaBH4-NiCl2

 

 

 

H2N

 

 

 

 

 

 

 

 

 

 

Me

76

105

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Me

MeOH, RT, 30 min

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Me

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Me

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Me

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Me

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NO2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NH2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OH NaBH

-CoCl 6H

2

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OH 73

102

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N

 

 

 

 

 

 

MeOH, 0 °C

 

 

 

 

 

 

 

 

 

 

N

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H

 

 

 

 

 

 

 

 

 

 

 

 

 

H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NO2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NH2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NaBH4-ZrCl4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

84

129

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

THF, reflux

 

 

 

 

 

Cl

 

 

 

 

 

 

 

 

 

Cl

 

 

 

 

 

 

Cl

 

 

 

Cl

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NO2

NaBH4-ZrCl4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NH2

80

129

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

THF, RT

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.3.3 Oximes, Hydroxylamines, and Other Nitrogen Derivatives

The final reduction products of nitro compounds are amines, but reduction intermediate products such as oximes and hydroxylamines have been also isolated on reduction of nitro compounds, as shown in Eq. 6.57, where the reaction is controlled by the applied reduction potentials. The partial reduction of nitroalkanes gives either oximes or alkyl-substituted hydroxylamines, depending on reaction conditions. Samarium diiodide is a good single electron-transfer reagent and it is very easy to control the reaction. Primary, secondary, or tertiary nitroalkanes can be reduced with SmI2 and CH3OH as the proton source to either alkyl hydroxylamines or amines, depending on the amount of SmI2. Reaction with 4 equiv of SmI2 in THF/MeOH for less than 5 min provides hydroxylamines in 60–90% yields. Reaction with 6 equiv of SmI2 for 8 h provides amines in 50–80% yields.111

R-NHOH

4 equiv SmI2

R

 

NO2

6 equiv SmI2

R-NH2

(6.57)

THF-MeOH (2:1)

 

THF-MeOH (2:1)

 

 

 

 

 

 

176 CONVERSION OF NITRO COMPOUNDS INTO OTHER COMPOUNDS

The conversion of nitroalkanes to ketoximes can be achieved by the reduction with Zn in acetic acid,112 or Fe in acetic acid.113 Nitroalkenes are directly reduced into saturated ketoximes by these reagents, which are precursors for ketones (see Section 6.1.4 Nef reaction). Reduction of 3-O-ace- tylated sugar 1-nitro-1-alkenes with Zn in acetic acid gives the corresponding 2,3-unsaturated sugar oximes in high yield, which is a versatile route to 2,3-unsaturated sugar derivatives (Eq. 6.58).114

 

 

 

 

 

 

CHNO2

 

 

HC

 

 

 

NOH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CH

 

 

 

CH

 

 

 

 

 

 

 

 

 

 

 

 

 

AcO

 

 

 

 

 

 

H

Zn, AcOH

CH

 

 

 

 

 

 

 

 

 

 

 

 

 

H

 

 

 

 

 

 

 

OAc

 

H

 

 

 

 

OAc

(6.58)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H

 

 

 

 

OAc

 

H

 

 

 

 

 

 

 

OAc

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CH2OAc

 

 

 

CH2OAc

 

 

 

 

 

 

 

88%

 

 

 

 

 

 

 

 

 

 

 

 

 

As shown in Eq. 6.59, Rapoport has prepared sinefungin, nucleoside antibiotics, via nitro-aldol reaction, dehydration, and reduction with Zn in acetic acid.115a β-Nitrostyrenes are selectivity reduced to the corresponding oximes by indium metal in aqueous methanol under neutral conditions.115b

O

 

 

 

Ts

 

 

 

 

 

 

 

 

 

 

 

OMe

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

O

+ t-BuO

 

 

NO2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

Ts

 

 

 

 

 

 

H3C

 

CH3

 

NH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1) KF, CH3CN, 24 h

t-BuO

 

 

 

 

 

OMe

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2) DCC, CuCl, CH3CN

 

 

 

 

 

 

(6.59)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3) Zn, THF, aq HOAc,

O

 

HO

N

 

 

 

 

 

 

 

 

 

 

O

 

O

 

 

 

 

 

45 ºC, 15 min

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H3C CH3

69% overall

The conversion of nitroalkenes into the oximes can be achieved by electrochemical reduction (Eq. 6.60).116

 

 

NO2

C-Pt, e

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CH

 

C

 

 

 

 

 

CH2 C N OH

(6.60)

 

 

 

 

 

 

 

 

 

 

 

MeOH, H2SO4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Me

 

 

 

 

 

Me

 

 

 

 

 

43%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reaction ofthesaltsofprimaryandsecondaryalkylnitrocompoundswithdiboraneinTHFsolution at 25 °C yields the corresponding hydroxylamines.117 Kabalka has reported the reduction of nitroalkenes to hydroxylamines or amines with a variety of borane and borohydride reagents (Eq. 6.61).118

 

NaBH4

 

 

 

NO2

 

 

78%

 

 

 

 

 

 

NO2

BH3, THF

 

 

 

NOH

 

 

 

 

 

BH3, NaBH4

 

 

 

(6.61)

 

 

79%

 

 

 

 

 

NH2

88%

6.3 REDUCTION OF NITRO COMPOUNDS INTO AMINES 177

Deoxygenation from nitroalkanes is possible by other various reagents, including TiCl3,119 Me3SiI,63 carbon disulfide in the presence of base,120 Me3SiSiMe3,121 and Sn(SPh)2-PhSH-Et3N

(Eq. 6.62).122

NO2

 

N

 

 

Reagent

Yield (%)

 

 

OH

84 (6.62)

 

 

 

 

 

 

 

Me3SiI

 

 

 

 

 

 

 

BuLi + Me3SiSiMe3

69

 

 

 

 

 

 

 

 

 

 

 

 

 

A combination of tributylphosphine-diphenyldisulfide reduces secondary nitro compounds to imines, which is applied to pyrrole synthesis (Eq. 6.63).34

Ph

O

Ph

 

 

 

 

 

 

Bu3P, PhSSPh

 

 

 

Ph

 

(6.63)

Me

 

Me

N

Ph

NO2

 

 

H

 

 

 

90%

 

A new selective reduction of nitroalkenes into enamides has been carried out by a combination of iron powder, a carboxylic acid, and the corresponding anhydride (Eq. 6.64).123

NO2

NHAc

Fe, AcOH

 

 

(6.64)

 

Ac2O

 

67%

A new multicomponent reaction of nitro compounds with isocyanides gives α-oxyimi- noamides, which are important for drug synthesis such as cephalosporin and β-lactamase

inhibitor (Eq. 6.65).124a Multicomponent reactions using isocyanides (Ugi reaction) is reviewed.124b

 

 

 

O

O2N

 

N

N

 

 

OAc

+

Ac2O

H

 

NC

 

(6.65)

 

 

 

63%

Photoreduction of aromatic and aliphatic nitro compounds gives hydroxylamines or amines, which is well reviewed.125 The radical reaction of primary nitro compounds with tin hydride does not give the denitrated product (see Chapter 7), but give the corresponding oximes (Eq.

 

OAc

 

OAc

 

 

 

 

 

 

Bu3SnH, AIBN

AcO

O

OH

AcO

O

 

 

AcO

 

 

benzene, reflux

 

N

 

 

AcO

NO2

 

OAc

 

 

OAc

 

 

 

90% (6.66)

178 CONVERSION OF NITRO COMPOUNDS INTO OTHER COMPOUNDS

6.66).126a This reaction is useful in carbohydrate chemistry and a nitromethylene linked disaccharide is prepared via this reaction.126b

Nitroxides are N,N-disubstituted nitric oxide radicals, the unpaired electron being delocalized between the nitrogen and oxygen. The reduction of 2-methyl-2-nitropropane with sodium or electrochemically yields di-t-butyl nitroxide as the final product.127 Such nitroxide radicals are important for the study of a organic ferromagnet.128

Phosphorous reagents are well established as deoxygenating agents of nitro compounds. Cadogan and others have reported the abstraction of oxygen from aromatic nitro compounds by triethyl phosphite to form various heterocycles.130 These reactions proceed via nitrene intermediates to give heterocycles (Section 10.2). Diethyl chlorophosphite is more reactive than triethyl phosphite, and it reduces both aromatic and aliphatic nitro groups to the corresponding amino groups in the presence of tertiary amines.131

REFERENCES

1.Noland, W. E. Chem. Rev., 55, 137 (1955).

2.Nielsen, A. T. The Chemistry of Functional Groups; Nitrones, Nitronates and Nitroxides, ed. by S. Patai and Z. Rappoport, John Wiley, London, 1989.

3.Pinnick, H. W. In Organic Reactions, ed. by L. A. Paquette, John Wiley, 38, Chapter 3 (1990).

4.Keinan, E., and Y. Mazur. J. Am. Chem. Soc., 99, 3861 (1977).

5.Jacobsen, R. M. Tetrahedron Lett., 3215 (1974).

6.Hwu, J. R., and R. A. Gilbert. J. Am. Chem. Soc., 113, 5917 (1991).

7a. Shechter, H., and F. T. Williams. J. Org. Chem., 27, 369 (1962).

7b. Kornblum, N., A. S. Erickson, W. J. Kelley, and B. Henggeler. J. Org. Chem., 47, 4534 (1982). 7c. Steliou, K., and M. A. Poupart. J. Org. Chem., 50, 4971 (1985).

7d. Cookson, R. C., and P. S. Ray. Tetrahedron Lett., 23, 3521 (1982).

8.Aizpurua, J. M., M. Oiarbide, and C. Palomo. Tetrahedron Lett., 29, 5361 (1987).

9.Galobardes, M. E., and H. W. Pininick. Tetrahedron Lett., 22, 5235 (1981).

10.Olah, G. A., and B. G. B. Gupta. Synthesis, 44 (1980).

11.Olah, G. A., M. Arvananaghi, Y. D. Vankar, and G. K. S. Prakash. Synthesis, 662 (1980).

12.McMurry, J. E., J. Melton, and H. Padgett. J. Org. Chem., 39, 259 (1974); Org. Synth. 6, 648 (1988).

13.Williams, J. R., L. R. Unger, and R. H. Moore. J. Org. Chem., 43, 1271 (1978).

14.Bartlett, P. A., F. R. Green III, and T. R. Webb. Tetrahedron Lett., 18, 331 (1977).

15.Ceccherelli, P., M. Curini, F. Epifano, M. C. Marcotullio, and O. Rosati. Synth. Commun., 28, 3057 (1998).

16.Ballini, E., and M. Petrini. Tetrahedron Lett., 30, 5329 (1989).

17.Adam, W., M. Makosza, C. R. Saha-Moller, and C. G. Zhao. Synlett., 1335 (1998).

18a. Tokunaga, Y., M. Yagihashi, M. Ihara, and K. Fukumoto. J. Chem. Soc., Chem. Commun., 955 (1995).

18b. Tokunaga, Y., M. Ihara, and K. Fukumoto. J. Chem. Soc. Perkin Trans 1, 207 (1997).

19.Barton, D. R. H., W. B. Motherwell, and S. Z. Zard. Tetrahedron Lett., 24, 5227 (1983).

20.Nokami, J., T. Sonoda, and S. Wakabayashi. Synthesis, 763 (1986).

21.Kornblum, N., and P. A. Wade. J. Org. Chem., 38, 1416 (1973).

22.Edward, J. T., and P. H. Tremaine. Can. J. Chem., 49, 3483 (1971).

23.Saville-Stones, E. A., and S. D. Lindell. Synlett, 591 (1991).

24.Forzato, C., P. Nitti, G. Pitacco, and E. Valentin. Gazz, Chim, Ital., 125, 223 (1995).

25.Kornblum, N., R. K. Blackwood, and D. D. Moonberry. J. Am. Chem. Soc, 78, 1501 (1956).

26.Matt, C., A. Wagner, and C. Mioskowski. J. Org. Chem., 62, 234 (1997).

27.Lakshmaiah, G., T. Kawabata, M. Shang, and K. Fuji. J. Org. Chem., 64, 1699 (1999).

28.McMurry, J. E., and J. Melton. J. Am. Chem. Soc., 93, 5309 (1971).

29a. McMurry, J. E., and J. Melton. J. Org. Chem., 38, 4367 (1973).

29b. McMurry, J. E. Acc. Chem. Res., 7, 281 (1974).

REFERENCES 179

30.Walchli, R., S. Benz, and M. Hesse. Helv. Chim. Acta, 68, 484 (1984).

31.Noyori, R., and M.Suzuki. Angew. Chem. Int. Ed. Engl., 23, 847 (1984).

32.Kirchhoff, R. Tetrahedron Lett., 2533 (1976).

33.Hanson, J. P. Synthesis, 1 (1974).

34.Barton, D. H. R., W. B. Motherwell, E. S. Simmon, and S. Z. Zard. J. Chem. Soc. Perkin Trans 1, 2243 (1986).

35.Hass, H. B., A. G. Susie, and R. L. Heider. J. Org. Chem., 15, 8 (1950).

36.Nightingale, D., and J. R. James. J. Am. Chem. Soc., 55, 352 (1944).

37.Monti, D., P. Gramatica, G. Speranza, and P. Manitto. Tetrahedron Lett., 24, 417 (1983).

38.Varma, R. S., M. Barma, and G. W. Kabalka. Tetrahedron Lett., 26, 3777 (1985).

39.Mourad, M. S., R. S. Varma, and G. W. Kabalka. Synthesis, 654 (1985).

40.Bordoloi, M. J. Chem. Soc., Chem. Commun., 922 (1993).

41.Torii, S., H. Tanaka, and T. Katoh. Chem. Lett., 607 (1983).

42a. Heinzelman, R. V. Org. Synth, 4, 573 (1963).

42b. Hauser, F. M., D. Sengupta, and S. A. Corlett. J. Org. Chem., 59, 1967 (1994).

43.Singhal, G. M., N. B. Das, and R. P. Sharma. J. Chem. Soc., Chem. Commun., 1470 (1989).

44.Ballini, R. Studies in Natural Product Chemistry, ed. by A. Rahman, 19, 117 (1997), Elsevier, Amsterdam, 1997.

45.Ballini, R., and G. Bosica. Synthesis, 723 (1994).

46.Ballini, R., and M. Petrini. J. Chem. Soc. Perkin Trans 1, 3159 (1992).

47a. Ballini, R., and G. Bosica. J. Chem. Res. (S), 435 (1993).

47b. Rossini, R., G. Bosica, and R. Schaafstra. Liebigs Ann Chem., 1235 (1994).

48.Ballini, R., G. Bosica, and G. Rafaiani. Helv. Chim. Acta, 78, 879 (1995).

49.Tamura, R., M. Sato, and D. Oda. J. Org. Chem., 51, 4368 (1986).

50.Torssell, K. G. B. Nitrile Oxides, Nitrones, and Nitronates in Organic Synthesis, by, VCH, New York, 1987.

51.Carruthers, W. Cycloaddition Reactions in Organic Synthesis, Pergamon Press, Oxford, 1990.

52.Kozikowski, A. P., Comprehensive Heterocyclic Chemistry, ed. by A. R. Katritzky, Pergamon Press, Oxford, 1984.

53.Kozikowski, A. P. Acc. Chem. Res. 17, 410 (1984).

54.Advances in Cycloaddition Chemistry, ed. by D. P. Curran, JAI Press Inc. Greenwich, Connecticut, Vol.1, 1988; and Vol. 2, 1990.

55.Kamimura, A. J. Synth. Org. Chem. Japan, 50, 808 (1992).

56.Kanemasa, S., and O. Tsuge. Heterocycles, 30, 719 (1990).

57a. Mukaiyama, T., and T. Hoshino. J. Am. Chem. Soc., 82, 5339 (1960). 57b. Kantorowski, E. J., and M. J. Kurth. J. Org. Chem., 62, 6797 (1997).

57c. Kantorowski, E. J., S. P. Brown, and M. J. Kurth. J. Org. Chem., 63, 5272 (1998).

58.Basel, Y., and A. Hassner. Synthesis, 309 (1997).

59.Kumaran, G., and G. H. Kulkarni. J. Org. Chem., 62, 1516 (1997). 60a. Maiti, D., and P. K. Bhattacharya. Synlett, 385 (1998).

60b. Matt, C., A. Gissot, A. Wagner, and C. Mioskowski. Tetrahedron Lett., 41, 1191 (2000).

61a. Wade, P. A., N. V. Amin, H. K. Yen, D. T. Price, and G. F. Huhn. J. Org. Chem., 49, 4595 (1984). 61b. Suzuki, H., H. Shimidzu, T. Inamasu, H. Tani, and R. Tamura. Chem. Lett., 559 (1990).

62.Kaim, J. E., and A. Gacon. Tetrahedron Lett., 38, 3391 (1997).

63.Olah, G. A., A. C. Narang, L. D. Field, and A. P. Fung. J. Org. Chen., 48, 2766 (1983).

64.Denis, J. N., and A. Krief. J. Chem. Soc., Chem. Commun., 544 (1980).

65.Wehril, P. A., and B. Schaer. J. Org. Chem., 42, 3956 (1970).

66.Olah, G. A., Y. D. Vankar, and R. G. B. Gupta. Synthesis, 36 (1979).

67.Urpf, F., and J. Vilarrasa. Terahedron Lett., 31, 7497 (1990).

68.Tsay, S. C., P. Gani, and J. R. Hwu. J. Chem. Soc. Perkin Trans, 1, 1493 (1991).

69.Chang, R. K., and K. Kim. Tetrahedron Lett., 37, 7791 (1996).

70a. Larock, R. C. Comprehensive Organic Transformations, VCH, New York, pp 411–415 (1989). 70b. Sandler, S. R., and W. Karo. Organic Functional Group Preparation,Academic Press, New York,

p. 339–345 (1968).

180 CONVERSION OF NITRO COMPOUNDS INTO OTHER COMPOUNDS

70c. Kabalka, G. W., and R. S. Varma. Reduction of nitro and nitroso compounds, in Comprehensive Organic Synthesis, ed. by B. M. Trost and E. Fleming, Vol. 8, p. 363–379, Pergamon Press, Oxford (1991).

70d. Hudlicky, M. Reductions in Organic Chemistry, 2nd ed, American Chemical Society, Washington DC, 1996.

71.Rylander, P. Catalytic Hydrogenation in Organic Synthesis, Academic Press, 113, New York (1979).

72.Wertheim, E. Org. Synth., 2, 471 (1943).

73.Martin, E. L. Org. Synth., 2, 501 (1943).

74a. Mahood, S. A., and P. V. L. Schaffner. Org. Synth., 2, 160 (1943). 74b. Fox, B. A., and T. L. Threlfall. Org. Synth. 5, 346 (1973).

75a. Clarke, H. T., and W. W. Hartman. Org. Synth., 1, 455 (1941).

75b. Hartman, W. W., J. B. Dickey, and J. G. Stampfli. Org. Synth., 2, 175 (1943). 76a. Dirmoth, K., A. Berndt, H. Perst, and C. Reichardt. Org. Synth., 5, 1130 (1973).

76b. Ickk, R. N., C.E. Redemann, B. B. Wisegarver, and G. A. Alles. Org. Synth., 3, 59 (1955). 76c. Allene, G. F. H., and J. Van Allan. Org. Synth., 3, 63 (1955).

77.Adams, R., and F. L. Cohen. Org. Synth., 1, 240 (1941).

78.Mendenhall, G. D., and P. A. S. Smith. Org. Synth., 5, 829 (1973).

79.Bavin, P. M. G. Org. Synth., 5, 30 (1973).

80a. Boyer, J. H., and R. S. Buriks. Org. Synth., 5, 1067 (1973). 80b. Hartman, W. W., and H. L. Silloway. Org. Synth., 3, 82 (1955).

81a. Satoh, T., S. Suzuki, Y. Suzuki, Y. Miyazi and Z. Imai, Tetrahedron Lett., 4555 (1968). 81b. Nose, A., and T. Kudo. Chem. Pharm. Bull., 29, 1159 (1981).

81c. Satoh, T., K. Nanba and S. Suzuki. Chem. Pharm. Bull., 19, 817 (1971).

81d. Nishiki, M., H. Miyataka, Y. Niino, N. Mitsuo, and T. Satoh. Tetrahedron Lett., 23, 193 (1982). 82a. Coryese, N. A., and R. F. Heck. J. Org. Chem., 42, 3491 (1977).

82b. Modi, S. P., R. C. Oglesby, and S. Archer. Org. Synth. 9, 601 (1998).

82c. Heck, R. F. Palladium Reagents in Organic Syntheses, Academic Press, London, p. 418–423 (1985).

83.Romanelli, M. C., and E. I. Beckers. Org. Synth., 5, 552 (1973).

84.Yasuhara, A., A. Kasano, and T. Sakamoto. J. Org. Chem., 64, 2301 (1999).

85.Huber, D., G. Andermann, and G. Leclerc. Tetrahedron Lett., 29, 635 (1988).

86.Moody, C. J., and M. R. Pitts. Synlett, 1028 (1998).

87.Tafesh, A. M., and J. Weiguny. Chem. Rev., 96, 2035 (1996).

88a. Souppe, J., L. Dannon, J. L. Namy and H. B. Kagan. J. Organomet. Chem., 250, 227 (1983). 88b. Wang, L., L. Zhou, and Y, Zang. Synlett, 1065 (1999).

88c. Basu, M. K., F. F. Becker, and B. K. Banik. Tetrahedron Lett., 41, 5603 (2000). 89. Zhou, L., and Y. Zhang. J. Chem. Soc., Perkin Trans 1, 2899 (1998).

90a. Dauben, H. J., Jr., H. J. Ringold, R. H. Wade, D. L. Pearson, and A. G. Anderson. Org. Synth. Coll. Vol. 4, 221 (1963).

90b. Diery, H. and B. Renger. Liebigs Ann. Chem., 1239 (1980).

90c. Forbes, D. C., D. G. Ene, and M. P. Doyle. Synthesis, 879 (1998). 91a. Beck, A. K., and D. Seebach. Chem. Ber., 124, 2897 (1991).

91b. Maeri, R. E., J. Heinzer, and D. Seebach. Leibigs Ann., 1193 (1995).

91c. Poupart, M. A., G. Fazal, S. Goulet, and L. T. Mar. J. Org. Chem., 64, 1356 (1999).

92a. Seebach, D., A. K. Beck, T. Mukhopadhyay, and E. Thomas. Helv. Chim. Acta., 65, 1101 (1982). 92b. Seebach, D., A. K. Beck, F. Lehr, T. Weller, and E. Colvin. Angew. Chem. Int. Ed. Engl., 20, 397

(1981).

92c. Eyer, M., and D. Seebach. J. Am. Chem. Soc., 107, 3601 (1985).

93a. Williams, T. M., and H. S. Mosher. Tetrahedron Lett., 26, 6269 (1985).

93b. Fukuda, Y., H. Kitasato, H. Sasai, and T. Suami. Bull. Chem. Soc. Jpn., 55, 880 (1982). 93c. Sakanaka, O., T. Ohmori, S. Kozaki, and T. Suami. Bull. Chem. Soc. Jpn., 60, 1057 (1987). 93d. Kanai, K., S. Ogawa, and T. Suami. Bull. Chem. Soc. Jpn., 60, 2079 (1987).

94a. Mahboobi, S., and K. Bernauer. Helv. Chim. Acta, 71, 2034 (1988).

94b. Andruszkiewicz, R., and R. B. Silverman. Synthesis, 953 (1989).

95a. Webner, V., and V. Jager. Angew. Chem. Int. Ed. Engl., 29, 1169 (1990).

Соседние файлы в предмете Химия