Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

The Nitro Group in Organic Synthesis

.pdf
Скачиваний:
170
Добавлен:
15.08.2013
Размер:
4.69 Mб
Скачать

5.3 RING CLEAVAGE OF CYCLIC =-NITRO KETONES (RETRO-ACYLATION)

131

5.3 RING CLEAVAGE OF CYCLIC =-NITRO KETONES (RETRO-ACYLATION)

Because the anions of nitroalkanes are stable, retro-acylation of α-nitro ketones proceeds smoothly in the presence of a base catalyst. This type of reaction provides an important tool in organic synthesis.28 Nucleophilic attack of water or alcohol to α-nitro cycloalkanones produces the ring cleavage with the formation of ω-nitro acids and ω-nitro esters. This type of cleavage is a well-known reaction,29 but it has not been used in organic synthesis until quite recently. Ballini and coworkers have studied the effect of base and solvent for this reaction. They have found a significant improvement of the ring cleavage of cyclic α-nitro ketones using a weakly basic ion-exchange resin (amberlyst A-21) (Eq. 5.15).30 α-Nitro cycloalkanones are cleaved to ω-nitro acids (71–97%) in aqueous media (0.05 M sodium hydroxide) and in the presence of a catalytic amount of cetyltrimethylammonium chloride (CTACl) as cationic surfactant.28

O

 

NO2

 

NO2

amberlyst A-21

 

CO2Me

(5.15)

 

MeOH

n

n

 

reflux, 1–72 h

75–99%

 

n = 1-4, 6-8, 11

 

 

 

 

One-pot syntheses of 1,4-diketones, γ-oxoaldehydes, γ-ketoesters, and ω-oxoalkanoates have been reported by bond cleavage of cyclic α-nitroketones with KOH in methanol and subsequent Nef reaction (Section 6.1) with KMnO4 (Eq. 5.16).31

O

 

 

 

 

NO2

 

O

 

 

n

 

 

H

 

KOH/MeOH

MeO

n

(5.16)

reflux

 

 

R

N

 

R

 

 

 

O

O

 

n = 0–2, 6, 7, 10 R = H, Me, t-Bu

 

 

O

KMnO4

MeO

H

MgSO4

n

 

R O

Regioselective reduction of 2-nitrocycloalkanones with sodium borohydride affords ω-nitro alcohols. This reaction is applied to the synthesis of spiroketals as shown in Eq. 5.17, in which spiro[4,5]- and spiro[4,6]ketal systems are obtained in good yields.32

O

 

 

O

O

 

 

 

 

R

base

NO2

 

 

NaBH

 

NO2

+

 

R

 

4

 

 

 

 

MeCN/H2O

 

n

O

 

n

 

 

 

 

 

 

 

 

 

R = H, Me, Et; n = 1, 2

 

 

 

 

 

 

O

O

 

O

R

 

O

R

 

 

 

 

OH

N

H3O

+

 

 

 

 

 

R

n

 

+

n

 

 

 

O

 

O

 

 

 

 

 

 

 

n

 

(E)

 

 

(Z)

 

 

OH

 

 

 

 

 

 

 

60–75%

(5.17)

 

 

 

 

132 ALKYLATION, ACYLATION, AND HALOGENATION OF NITRO COMPOUNDS

Oxidative cleavage of 2-nitrocyclohexanones gives α,ω-dicarboxylic acids or their esters, as shown in Eq. 5.18.33

O

 

 

 

 

 

NO2

 

 

O

 

 

 

K2S2O8, H2SO4

 

R

OMe

 

 

MeO

 

(5.18)

n

MeOH, 80 ºC

n

 

 

 

 

R

 

 

O

 

 

 

80–92%

 

n = 0–7, 10

 

 

 

 

R = Me, Ph, t-Bu

 

 

 

 

 

The reaction of organometallic reagents with cyclic α-nitroketones gives tertiary β-nitroal- kanols (Eq. 5.19).34 However, the reaction of the same nitro ketone with trimethylsilylmethylmagnesium gives ring cleavage products (Eq. 5.20).35 Ballini postulates that the silicon β effect assists the cleavage of the C-C bond in the sense of the arrows.

 

 

O

 

 

 

 

 

R

 

X

 

 

 

 

 

 

 

 

 

 

 

 

 

Mg

 

 

 

 

 

 

 

 

NO2 RMgX

O

 

O

 

RMgX

 

 

 

 

 

 

 

 

 

 

 

 

N

 

 

 

 

 

 

 

 

 

 

THF

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

–30 to 0 ºC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

HO

R

R = Me, Et, n-Bu, CH2=CH,

 

 

 

 

 

NO2

 

 

 

 

 

(CH3)2CHCH2, PhCH2,

 

 

 

 

 

 

 

 

(5.19)

 

 

 

 

 

 

CH =C=CH,PhC

C,

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

60–85%

O

CH2

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

Mg

 

 

NO2

 

2 Me SiCH MgCl

Me

SiCH

 

O

O

 

 

 

 

 

 

 

 

 

 

 

3

2

 

 

3

2

 

N

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

n

 

 

 

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n = 0, 2

 

 

 

 

 

O

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

Me Si

 

 

 

NH Cl

 

 

Me3Si

 

 

O

3

 

 

 

4

 

 

 

 

 

 

(5.20)

 

 

 

 

 

Satd. soln

 

 

 

 

 

ClMgO

N

 

O2N

n

n

 

 

 

 

 

 

 

 

75–85%

The reaction of α-nitrocycloalkanones with an aqueous solution of formaldehyde in the presence of potassium carbonate affords 2-nitro-1,3-diol-ω-alkanoic acids (Eq. 5.21).36

 

O

 

 

 

 

 

 

 

 

NO2

O

 

 

 

 

R

NO2

 

 

 

 

30% CH2O aq

 

(5.21)

 

 

 

 

HO

n

 

 

 

 

 

 

R

n

 

K2CO3, RT

HO

OH

 

 

 

 

 

 

 

 

n = 0, 1, 2, 7, 10

48–75%

R = Me, t-Bu

 

5.4 ALKYLATION OF NITRO COMPOUNDS VIA ALKYL RADICALS 133

Ring enlargement of α-nitrocycloalkanones has been extensively used for the synthesis of macrocyclic compounds, as exemplified in Eq. 5.22.37

O OH NaH (cat.) or NaOH

O

O

(5.22)

 

MeOH

NO2

NO2

 

85%

The retro-Henry reaction of 2-nitrocycloalkanols gives ω-nitro ketones, as shown in Eq. 5.23.38

OH

 

CuSO •SiO

 

 

NO2

NO

2

2

 

 

4

O

(5.23)

 

 

benzene

 

 

 

 

 

 

 

reflux

 

 

73%

5.4 ALKYLATION OF NITRO COMPOUNDS VIA ALKYL RADICALS

The ability of a nitro group in the substrate to bring about electron-transfer free radical chain nucleophilic substitution (SRN1) at a saturated carbon atom is well documented.39 Such electron transfer reactions are one of the characteristic features of nitro compounds. Kornblum and Russell have established the SRN1 reaction independently; the details of the early history have been well reviewed by them.39 The reaction of p-nitrobenzyl chloride with a salt of nitroalkane is in sharp contrast to the general behavior of the alkylation of the carbanions derived from nitroalkanes; here, carbon alkylation is predominant. The carbon alkylation process proceeds via a chain reaction involving anion radicals and free radicals, as shown in Eq. 5.24 and Scheme 5.4 (SRN1 reaction).40

 

 

 

 

 

 

 

+

Me

 

 

 

 

 

 

 

 

 

 

Me

O2N

CH2Cl

 

 

 

 

 

 

 

 

 

O2N

 

 

CH2Cl +

 

 

 

NO2

 

 

 

 

 

 

 

 

 

 

 

 

Me

 

 

 

 

 

 

 

 

 

 

 

 

 

Me NO2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+ Cl

 

O2N

CH2Cl

 

 

 

 

 

 

 

O2N

 

 

CH2

Me

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Me

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Me

O2N

CH2

+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NO2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O2N

 

 

 

 

 

 

 

 

 

 

 

Me NO

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Me

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Me

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NO2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O2N

 

 

+

O2N

CH2Cl

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Me

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Me

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NO2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O2N

+

O2N

CH2Cl

 

 

 

 

 

 

 

 

 

 

Scheme 5.4. SRN1 reaction.

134 ALKYLATION, ACYLATION, AND HALOGENATION OF NITRO COMPOUNDS

 

 

 

 

 

Me

 

 

 

Me Li+ DMSO

Me

 

O2N

CH2Cl +

NO2

(5.24)

 

 

O N

 

 

 

 

 

Me

2

 

 

 

NO2

 

 

 

 

 

 

 

92%

 

SRN1 reactions using related p-nitrophenyl or p-nitrocumyl systems41 as reductive alkylating agents have been studied by Kornblum and co-workers; these are well summarized in the reviews.39 At the same time, Russell discovered the SRN1 reaction of geminal halonitroalkanes with stabilized carbanions (see Eq. 5.25).42 The products are readily converted into alkenes via elimination of nitro groups (see Section 7.3).

Me

Cl

 

Et

 

 

 

Me

NO2

 

 

+

 

DMSO

 

 

Me

NO2

+

 

Li

 

 

Me

CO2Et

(5.25)

 

 

 

EtO C

 

CO

Et

 

 

 

 

2

 

2

 

 

 

Et CO2Et

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

68%

 

The cyano group is also a good electron acceptor for SRN1 substrates, as shown in Eq. 5.2643 and Eq. 5.27,44 but a nitro group is a better electron acceptor than a cyano group.

 

CN

 

 

 

 

 

 

CN

 

 

 

Me

 

 

 

Me

 

 

 

 

 

 

 

 

 

Me

 

HMPA

 

Me

 

 

+

Li+

NC

(5.26)

NC

Me

 

 

Me

 

Me NO2

 

 

 

 

 

SO2Ph

 

 

 

 

 

 

 

 

 

 

O2N

 

 

 

 

 

 

 

 

 

Me

 

 

 

 

 

 

 

 

 

84%

 

Me

Br

 

Me

DMSO

Me

Me

 

 

Li+

 

 

 

 

+

 

 

 

 

 

Me

Me

(5.27)

 

 

 

 

 

 

Me

CN

Me

NO2

 

 

NC

NO2

 

 

 

 

 

 

 

 

82%

 

 

Geminal dinitro compounds,45 α-nitro sulfones,46 α-nitro esters,47 or α-nitro nitriles48 react with anions derived from nitroalkanes to give the SRN1 products, as shown in Eqs. 5.28, 5.29, 5.30 and 5.31, respectively (Section 7.1).

 

NO2

 

Me

 

+

 

 

DMSO

 

 

 

NO2

 

 

 

 

 

 

 

 

 

 

(5.28)

 

+

 

 

 

Li

 

 

 

 

 

 

 

NO2

 

Me

NO2

 

 

 

 

 

 

 

 

NO2

 

 

 

 

 

Me

Me

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

91%

 

 

NO2

 

Me

Li+

 

 

DMSO

 

 

 

NO2

 

 

 

 

 

 

 

 

 

 

 

+

 

 

 

 

 

 

 

 

NO2

 

 

Me

 

NO2

 

 

 

 

 

 

(5.29)

 

SO2Ph

 

 

 

 

 

 

Me

Me

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

85%

 

Me

 

Me

 

+

 

 

DMSO

 

 

Me

Me

 

 

Li

 

 

 

 

Me

Me

 

Me

CO2Et +

 

 

 

 

 

 

 

(5.30)

 

 

 

 

 

 

 

 

 

O

N

Me

 

NO2

 

 

 

 

 

EtO2C

NO2

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

70%

5.4

ALKYLATION OF NITRO COMPOUNDS VIA ALKYL RADICALS

135

NO2

Me Li+

DMSO

Me

 

 

 

+

 

 

Me

(5.31)

CN

Me NO2

 

CN NO2

 

 

 

 

92%

 

The anion of nitromethane is particularly reactive in SRN1 reactions. Various kinds of tertiary nitro groups are replaced by a nitromethyl group on treatment with the anion of nitromethane (Section 7.1).49 2-Iodoadamantane reacts with the anion of nitromethane in the presence of acetone enolate (entrainment reaction) under irradiation of a 400-W UV lamp to give 2-ni- tromethyladamantane in 68% yield, (see Eq. 5.32).50a 1-Iodoadamantane also reacts with the anion of nitromethane in a similar way.50b

I

 

 

 

hυ

 

CH2NO2

+ Na+ CH

NO

 

 

 

 

2

 

 

(5.32)

2

 

 

O

 

 

 

 

 

 

 

 

 

H

C CH

 

 

3

2

68%

Crozet and co-workers have used SRN1 reactions for synthesis of new heterocycles, which are expected to be biologically active (see also Section 7.3, which discusses synthesis of alkenes). For example, 2-chloromethyl-5-nitroimidazole reacts with the anion of 2-nitropropane to give 2-isopropylidene-5-nitroimidazole. It is formed via C-alkylation of the nitronate ion

followed by elimination of HNO2 (Eq. 5.33).51a Other derivatives of nitroimidazoles are also good substrates for SRN1 reactions.51b,c

 

N

 

MeLi+

DMSO

 

N

Me

Me

 

 

 

 

 

 

 

 

 

 

 

 

 

O2N

N

CH2Cl

+

 

 

 

O2N

N

 

NO2

 

 

 

Me NO2

 

 

 

 

Me

 

 

 

 

 

 

 

 

 

 

 

 

Me

Me

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

base

O2N N

Me

 

 

(5.33)

 

 

 

 

 

 

 

 

 

 

 

 

Me

 

 

 

 

 

 

 

 

 

88%

 

 

 

 

Reactions of nitrothiazole derivatives with anions of nitroalkanes, such as shown in Eq. 5.34, proceed via a SRN1 mechanism.52

 

 

N

Me

 

 

Me

+

DMF

N

Me

Me

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O2N

S

 

 

 

+

 

Li

 

O2N S

 

NO2 (5.34)

 

 

 

 

 

 

 

NO

 

Me NO2

 

 

 

Me

2

 

 

Me

Me

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

71%

 

The anion derived from ethyl 2-nitropropionate reacts with various reductive alkylating agents (SRN1 substrates) to give new unsymmetrically disubstituted nitro esters (Eq. 5.35), which are interesting precursors for unusual amino acids.53

 

N

 

NO2

 

 

N

Me NO2

 

 

NaH, DMSO

 

 

OEt

 

 

 

OEt

O2N

 

O2N

 

CH2Cl +

N

(5.35)

N

 

hυ

 

 

Me

 

Me

O

 

Me

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

70%

136 ALKYLATION, ACYLATION, AND HALOGENATION OF NITRO COMPOUNDS

Gem-nitro imidazolyl alkanes undergo SRN1 reactions with the anion of various nitroalkanes, as shown in Eq. 5.36.54 The nitro group is replaced by hydrogen in 80–90% yield on treatment with Bu3SnH (see Chapter 7, which discusses radical denitration).

N

 

Me

 

N

Me Me

 

 

ηυ

N

 

 

 

 

N

NO2 +

Li+

 

NO2

(5.36)

 

 

Me

Me

NO2

 

 

Me Me

 

Me

 

 

 

65%

 

 

 

 

 

 

 

SRN1 reactions are generally accelerated by irradiation with tungsten lamps (200–500 W) or fluorescent lamps. They are retarded in the presence of oxygen or other radical inhibitors. Recently, microwave irradiation has been shown to be effective in inducing SRN1 reactions; the reaction of Eq. 5.37 proceeds under microwave irradiation (900 W, 5 min) in the presence of trace amounts of water.55

 

Me

Na+

 

O2N

 

microwave (900 W)

Me Me

O2N

CH2Cl +

 

 

 

 

H2O, 4 min

NO2

 

Me NO2

 

 

 

 

82%

(5.37)

Alkyl mercury halides participate in a photo-stimulated radical chain reaction of the anion of nitroalkanes (see Eq. 5.38) in which a 275-W sun lamp is used.56a–c Primary, secondary, and

tertiary alkyl radicals generated from alkyl mercury halides react with the anion of nitroalkanes to form new C-C bonds.

 

 

 

 

 

Me

Me

 

 

 

 

hυ

Ph

Me3CHgCl +

 

 

 

Me

PhCHNO2

 

(5.38)

DMSO

 

 

 

 

 

NO2

 

 

 

 

 

 

 

 

 

 

 

 

71%

Branchaud and coworkers have used cobaloximes as alkyl radical precursors for the cross-coupling reaction with nitronates.57 This method is very useful for producing branchedchain monosaccharides, as shown in Eq. 5.39.57b

 

 

 

 

CH2I

 

 

 

 

 

 

 

 

 

O

O

 

 

 

 

 

 

 

 

 

 

O

 

 

 

py(dmgH) Co-

Na+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

CH2Co(dmgH)2py

 

 

CH2CH2NO2

 

O O

 

 

1) hυ, CH2NO2Na+

O O

 

 

O

 

 

 

 

O

(5.39)

 

 

 

 

 

 

 

 

O

 

 

2) AcOH

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

O

 

82%

 

 

 

 

 

 

 

76%

 

Martin and coworkers have used this strategy for synthesis of α- and β-(1,6)-linked C-disaccharides (Eq. 5.40).58

 

 

 

5.4

ALKYLATION OF NITRO COMPOUNDS VIA ALKYL RADICALS

137

 

OBn

 

 

 

 

 

 

 

OBn

 

BnO

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BnO

 

 

 

 

 

 

 

 

BnO

O

 

 

RO

CH Co(dmgH)

py

 

hυ

 

 

BnO

NO2

 

 

 

 

 

 

 

2

2

 

 

 

 

 

RO

 

 

 

+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

AcO

O

 

 

NO2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AcO

O

 

 

 

O N

 

N O

AcO

 

 

 

 

 

R-Co(dmgH)2py = H

Co H

AcO OMe

 

AcO

 

 

 

 

 

 

 

 

 

 

O N

 

N O

30%

 

 

 

AcO OMe

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Py

 

 

 

 

 

 

 

 

 

 

 

(5.40)

Carbon alkylation of simple nitronate anions is also possible by the reaction with N-substi- tuted pyridiniums, as exemplified in Eq. 5.41. Such types of reactions are classified as SRN2 reactions, in which electron transfer reactions from nitronate anions to pyridiniums are involved as key steps.59

Ph

 

 

 

+

EtOH

 

+ NaCH2NO2

 

PhCH2CH2NO2

(5.41)

 

Ph N

Ph

 

82%

CH2Ph

The anions derived from nitroalkanes are converted into the corresponding radicals on treatment with various oxidizing agents. The C-C bond-forming reactions using nitroalkyl radicals generated by this procedure are also important in organic synthesis. For example, aromatic nitromethylation can be carried out by heating a mixture of an aromatic compounds and Mn(III)OAc3 in acetic acid (see Eq. 5.42).60

Ar-H

+ CH3NO2

Mn(III)OAc3

ArCH2NO2

Ar = Ph (4%)

(5.42)

AcOH

Ar = Tol (55%)

 

 

 

 

Recently, Narasaka and co-workers have found that 1-nitroalkyl radicals are generated by oxidation of aci-nitroanions with CAN, and they undergo the intermolecular addition to electron-rich olefins.61 For example, when oxidation is carried out in the presence of silylenol ethers, β-nitroketones are formed in good yield. β-Nitroketones are readily converted into enones on treatment with base (see Section 7.3), as shown in Eq. 5.43.

 

 

1) KOH

 

O

Ph(CH2)3

NO2

 

 

 

(5.43)

2)

CAN, OSiMe3

Ph(CH2)3

Ph

 

 

 

 

 

Ph

99%

 

 

 

3)

Et3N, –78 ºC

 

 

 

 

 

Interesting intramolecular cyclization of 1-nitroalkyl radicals generated by one-electron oxidation of aci-nitro anions with CAN is reported. As shown in Eq. 5.44, stereoselective formation of 3,4-functionalized tetrahydrofurans is observed.62 1-Nitro-6-heptenyl radicals generated by one electron oxidation of aci-nitroanions with CAN afford 2,3,4-trisubstituted tetrahydropyrans.63 The requisite nitro compounds are prepared by the Michael addition of 3-buten-1-al to nitroalkenes.

138 ALKYLATION, ACYLATION, AND HALOGENATION OF NITRO COMPOUNDS

NO2

1) NaH, THF

 

NO2

 

ONO2

 

 

 

 

 

 

 

(5.44)

2) CAN, –78 ºC

O O H

58%

Radical cyclization of α,ω-dinitroalkanes is reported, as shown in Eq. 5.45. Oxidation of the dinitronate derived from 2,6-dinitroheptane with K3Fe(CN)6 in a two-phase system (water-ether) yields the cyclized vicinal dinitrocyclopentane in 71–85% yield in a cis-to-trans ratio of 60:40.64

NO2

NO2 1) MeONa

NO2

 

 

 

(5.45)

 

 

2) K3Fe(CN)3, Et2O-H2O

NO2

 

 

 

 

 

 

71–85%

Couplings of nitroalkyl radicals with nucleophiles such as CN, N3, NO2, and other nitrogen nucleophiles provides a useful method for the preparation of nitro compounds with such groups at the α-position.49,65 The alkylation of nitromethane with trialkylborane is possible by electrolysis, in which alkyl radicals may be involved (Eq. 5.46).66

 

 

e, Et4N+

X

NO2

B +

CH3NO2

(5.46)

 

 

3

50%

Oxidative cross-coupling reactions of alkylated derivatives of activated CH compounds, such as malonic esters, acetylacetone, cyanoacetates, and certain ketones, with nitroalkanes promoted by silver nitrate or iodine lead to the formation of the nitroalkylated products.67 This is an alternative way of performing SRN1 reactions using α-halo-nitroalkanes.

5.5 ALKYLATION OF NITRO COMPOUNDS USING TRANSITION METAL CATALYSIS

Monoanions derived from nitroalkanes are more prone to alkylate on oxygen rather than on carbon in reactions with alkyl halides, as discussed in Section 5.1. Methods to circumvent O-alkylation of nitro compounds are presented in Sections 5.1 and 5.4, in which alkylation of the α,α-dianions of primary nitro compounds and radial reactions are described. Palladiumcatalyzed alkylation of nitro compounds offers another useful method for C-alkylation of nitro compounds. Tsuji and Trost have developed the carbon-carbon bond forming reactions using π-allyl Pd complexes. Various nucleophiles such as the anions derived from diethyl malonate or ethyl

acetoacetate are employed for this transformation, as shown in Scheme 5.7. This process is now one of the most important tools for synthesis of complex compounds.68a–b Nitro compounds can

participate in palladium-catalyzed alkylation, both as alkylating agents (see Section 7.1.2) and nucleophiles. This section summarizes the C-alkylation of nitro compounds using transition metals.

5.5.1 Butadiene Telomerization

The palladium-catalyzed linear telomerization of 1,3-butadienes provides a useful method for the preparation of functionalized alkenes. A proposed catalytic cycle for the palladium-catalyzed

5.5 ALKYLATION OF NITRO COMPOUNDS USING TRANSITION METAL CATALYSIS 139

 

LnPd(0)

 

 

H X

Pd L

 

 

 

Pd

L

H

 

 

 

 

 

 

 

 

 

 

 

X

+ L

X

 

X

Pd

L

 

+

LnPd(0)

 

 

 

 

 

 

 

 

 

CH2

 

 

H

 

 

H

 

Scheme 5.5. Catalytic cycle in the palladium-catalyzed telomerization of 1,3-butadiene

telomerization of 1,3-butadiene is shown in Scheme 5.5; a wide range of H-X trapping reagents (X = nucleophilic carbon, oxygen, nitrogen, or sulfur) are used.69

When nitromethane is used as a trapping reagent in the telomerization of butadiene using Pd(OAc)2 and Ph3P, mono-, diand trialkylated compounds of nitromethane are formed (Eq. 5.47).70 They are selectively formed by changing the ratio of nitromethane and butadiene. As the nitro groups are transformed into various functional groups, the reaction of Eq. 5.47 is very useful in organic synthesis.

+ CH3NO2

Pd(OAc)2

NO2

Ph3P

 

 

+

 

NO2

 

 

+

 

(5.47)

 

NO2

Butadiene telomerization using nitroethane as a trapping reagent is applied to the total synthesis of the natural product, recifeiolide, where the secondary nitro group is converted into the ketogroup by the Nef reaction, and the terminal double bond is converted into the iodide via hydro alumination (Scheme 5.6).71

Extension to carbocyclization of butadiene telomerization using nitromethane as a trapping reagent is reported (Eq. 5.48).72 Palladium-catalyzed carbo-annulation of 1,3-dienes by aryl halides is also reported (Eq. 5.49).73 The nitro group is removed by radical denitration (see Section 7.2), or the nitroalkyl group is transformed into the carbonyl group via the Nef reaction (see Section 6.1).

O

 

O

NO2

EtO

 

Pd(PPh3)4, PPh3 EtO

+ CH3NO2

 

EtO

EtO

 

 

 

O

 

O

 

 

 

79%

(5.48)

 

 

 

NO2

NO2

 

Pd(OAc)2, PPh3, LiCO3

 

+

 

(5.49)

 

H

I

 

 

 

 

 

73%

140 ALKYLATION, ACYLATION, AND HALOGENATION OF NITRO COMPOUNDS

 

 

Pd(OAc)

NO2

1) TiCl3

+

 

2

 

 

 

2) (HOCH2)2, H+

 

Ph3P

 

 

 

NO2

 

 

 

 

 

 

 

 

56%

 

 

 

 

 

 

 

 

 

O

O O

1) LiAlH4, TiCl3, I2

 

 

SPh

 

 

 

 

OH

 

Cl

 

2) NaBH4

 

 

 

 

 

 

 

 

 

 

 

 

I

70%

O O

 

1) KN(SiMe3)2

O O

SPh 2) Raney Ni

 

I

82%

Scheme 5.6. Synthesis of recifeiolide

Nitronate anions react with (π-allyl)cobalt complexes prepared from acylation of 1,3-dienes by acetylcobalt tetracarbonyl to produce nitro enones (Eq. 5.50).74

O

+ -

 

O2N

O

 

 

 

 

 

+

+ NaCH2NO2

 

 

Me

(5.50)

 

Me

Co(CO)3

 

74%

 

 

 

 

 

 

5.5.2 Pd-Catalyzed Allylic C-Alkylation of Nitro Compounds

The palladium-catalyzed allylic alkylation of soft nucleophiles (Tsuji-Trost reaction) represents one of the most useful organic transformations. Various allylating reagents and nucleophiles can participate in this reaction, as summarized in Scheme 5.7. Although allyl acetates, allyl carbonates, or 1,3-dienemonoepoxides are generally used as alkylating reagents, allylic nitro compounds also can be used as alkylating reagents (see Section 7.1). Active methylene compounds are generally used as nucleophiles in Tsuji-Trost reaction. Nitroalkanes, α-nitro ketones, α-nitro esters, and α-nitro sulfones can be also used as nucleophiles for this transformation.

 

Pd(0)

R

 

R

Nu

Nu + Pd(0) + X

X

R

 

 

Pd

 

 

 

X

 

X = OAc , OC(O)OR, SO2Ph, NO2, OP(O)(OR)2, NR2, SR, etc.

NuH = CH2(CO2R)2, CH2(CN)CO2R, CH2(SO2Ph)CO2R, CH2(NO2)CO2R, CH2(NO2)SO2Ph,

CH2(SO2Ph)2, etc.

Scheme 5.7. Pd(0) catalyzed allylic alkylation

Соседние файлы в предмете Химия