Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

The Nitro Group in Organic Synthesis

.pdf
Скачиваний:
170
Добавлен:
15.08.2013
Размер:
4.69 Mб
Скачать

4.2 ADDITION AND ELIMINATION REACTION OF β-HETEROSUBSTITUTED NITROALKENES 101

 

 

 

O

OMe

OZnCl

 

Et

 

Et

THF

 

NO2

 

 

NO2 +

 

O

O

 

(4.96)

–78 ºC

N

 

 

Et

Et

 

 

89% (96% ee)

 

 

 

If the chiral auxiliary in Eq. 4.96 is modified by changing MeO into more bulky groups such as trityl (Tr) or t-butyldimethylsilyl (TBS) group, an improved asymmetric nitro-olefination of α-alkyl-γ- and δ-lactones is possible (Eq. 4.97).120

OR

 

OZnCl

 

 

 

 

 

NO2

+

R

Yield (%)

ee (%)

 

Me

 

 

 

 

 

 

 

 

 

 

 

 

N

O

 

 

Me

82

56

 

 

Et

 

 

 

 

 

 

 

 

 

 

 

 

 

THF

 

O

Me

Tr

75

83

 

 

 

 

 

 

 

 

O

 

NO2

TBS

92

88

(4.97)

–78 ºC

 

 

 

 

 

 

 

 

 

 

 

 

 

Chiral nitroolefins prepared in Eqs. 4.96 and 4.97 are converted into various natural products as summarized in Scheme 4.16.121–123

The modification of chiral enamines enables the asymmetric nitro-olefination of oxyindoles, as shown in Eq. 4.98.124 An enantioselective synthesis of (–)-psudophyrnaminol is accomplished using this reaction.

 

 

 

Ph

 

 

 

N

Ph

 

 

 

OMe

 

 

 

 

 

 

1) n-BuLi

NO2

 

 

N O

2) ZnCl2

 

 

NO2

SiMe2But

 

 

 

N O

 

 

OH

SiMe2But

 

 

 

85% (95% ee)

 

 

 

 

(4.98)

N N

H H Me

The strategy based on asymmetric nitro-olefination is further applied to a total synthesis of

(–)-horsfiline (Eq. 4.99).125

MeO

Ph

 

 

Ph

1) n-BuLi

MeO

N

+OMe

N O

2) ZnCl2

NO2

SiMe But

NO

N O

t

2

2

SiMe2Bu

 

NMe

 

MeO

84%

 

 

(4.99)

N O H

102 MICHAEL ADDITION

 

 

 

 

 

O

 

N

N

 

N

NO2

 

 

 

 

 

 

 

 

N

O

 

 

H

 

 

(S)

 

 

 

 

 

N

N

O

 

 

 

 

 

 

H

H H

 

 

 

 

OH

 

 

(Ref. 121)

O

 

MeHN

O

 

 

NO2

 

 

 

 

 

 

 

(Ref. 122)

O

 

 

O

 

 

(S)

 

 

N

 

 

 

N

 

 

 

 

MeH Me

 

 

HO2C

H

 

 

 

 

 

 

 

 

O

 

 

 

 

 

NO2

 

 

OMe

H

 

O

H

O

 

 

(R)

 

 

(Ref. 123)

 

H

 

H

 

 

 

 

 

 

 

 

 

CO2H

CO2H

 

 

 

O

 

 

 

Scheme 4.16.

Nitroalkenes are generally prepared by the substitution reaction of β-nitro sulfides and sulfoxides with a variety of carbon nucleophiles via an addition-elimination sequence. This method is particularly useful for the preparation of cyclic nitroalkenes (Eq. 4.100).126

 

 

O2N O

 

 

 

O

1) LDA

S Et

 

 

O

Me

 

Me

 

(4.100)

N

 

 

N

2) ZnCl2

–78 ºC

 

 

 

 

 

 

 

 

 

 

 

 

 

NO2

 

 

 

 

 

87%

A chiral sulfoxide can be used as a leaving group for the asymmetric induction via addition-elimination process. δ-Lactam enolates are converted into the corresponding nitroalkenes substituted with lactams (Eq. 4.101).127

 

O2N

O

Ph

 

 

S

Me

 

O

Me

NMe

 

1) LDA

 

(4.101)

Me N

 

 

Me

–78 ºC

O

 

2) ZnCl2

NO2

 

 

 

 

91% (84% ee)

A total synthesis of (–)-physostigmine is accomplished from a chiral nitroolefin of Eq. 4.101 (Scheme 4.17).128

The addition-elimination reaction of copper-zinc organometallics RCu(CN)ZnX with (E)- 1-nitro-2-phenylsulfonylethylene gives highly functionalized (E)-nitroalkenes in excellent yields.129

Organometallics bearing esters (Eq. 4.102),13015 dienes (Eq. 4.103),131 or oxygen functions (Eq. 4.104)132 give nitroalkenes functionalized by these groups.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3 MICHAEL ADDITION OF NITROALKANES

103

 

Me

 

 

 

 

 

 

 

 

 

 

 

 

 

Br Me

 

 

 

 

 

 

 

Me

 

 

 

N Me

 

 

 

Br2, ButOK

 

 

 

N Me

 

1) ButOK, DMSO

 

 

N Me

 

 

 

 

 

 

 

 

 

 

 

 

 

NOO2

 

 

 

 

 

 

 

 

 

 

 

 

NOO2

 

2) H2, PtO2

 

 

NHO2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

75%

 

 

 

 

 

 

 

Me

 

 

 

 

 

 

 

 

 

 

 

Me

 

 

 

 

 

 

 

 

 

 

 

 

 

Br

 

 

 

ClCO2Et

 

 

 

N Me

 

1) LiAlH4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

2) NBS

 

 

 

 

N

 

N

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NHCO2Et

 

 

 

 

 

 

 

 

 

H

 

 

 

 

 

 

 

 

 

 

 

29% (3 steps)

 

 

 

 

 

 

 

Me Me

 

 

 

 

 

 

 

 

 

 

 

 

Me

 

 

35%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RO

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NaOMe, CuI

 

 

 

 

 

 

 

R = Me

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N

 

N

R = CONHMe

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H

Me

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Me

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

35%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 4.17.

 

 

 

 

 

 

 

 

 

 

 

 

Et2OC(CH2)3I

 

 

 

Zn, CuCN

 

EtO2C(CH2)3Cu(CN)ZnI

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2 equiv LiCl

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O2N

SO2Ph

EtO2C(CH2)3CH=CHNO2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(4.102)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

81%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O2N

 

 

 

 

 

 

 

NO2

 

 

 

 

 

 

NO2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SO2Ph

 

 

SiO2

 

 

 

H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

THF, –60 ºC

 

 

 

 

 

 

 

hexane, RT

 

H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(CH2)3Cu(CN)ZnI

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

85%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(overall yield)

 

 

OAc

 

 

 

O2N

 

 

 

 

 

 

 

OAc

 

 

 

 

 

 

 

 

 

(4.103)

 

 

 

 

 

SO2Ph

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pri

 

 

 

 

 

 

 

 

 

 

Pri

Cu(CN)ZnBr

 

 

THF, –60 ºC, 2 h

 

NO2

 

 

 

 

 

(4.104)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

74%

 

 

 

 

 

 

 

 

 

 

 

4.3 MICHAEL ADDITION OF NITROALKANES

4.3.1 Intermolecular Addition

The Michael addition of nitroalkanes to electron-deficient alkenes provides a powerful synthetic tool in which it is perceived that the nitro group can be transformed into various functionalities. Various kinds of bases have been used for this transformation in homogeneous solutions, or, alternatively, some heterogeneous catalysts have been employed. In general, bases used in the Henry reaction are also effective for these additions (Scheme 4.18).133

R

NO2

 

 

2

 

base

R2

 

+

R

Y

R

Y

R1

H

 

 

 

 

 

 

R1 NO2

 

 

 

 

 

 

 

 

 

Y = CO2Et, C(O)R3, CN, S(O)Ph, SO2Ph, etc.

base = RO-, F-, R3N, R3P, tetramethylguanidine (TMG), DBU, etc.

Scheme 4.18.

104 MICHAEL ADDITION

When electron-deficient alkenes are very reactive, weak bases such as triethylamine or triphenylphosphine (Eq. 4.105)134 are reactive enough as base. On the other hand, stronger bases

O

 

O

O

 

Me

PPh3

NO2

 

NO2

Me

 

+

(4.105)

O

THF

 

RT, 24 h

 

 

94%

 

 

such as DBU or tetramethylguanidine (TMG) are necessary when less reactive alkenes such as vinyl sulfoxides (Eq. 4.106)135 or α-substituted α,β-unsaturated carbonyl compounds are used

(Eq. 4.107).136 TMG has been widely used for the Michael addition of nitroalkanes to various electron-deficient alkenes since the first report in 1972.137–140 High-pressure accelerates the

reaction to induce the Michael addition with less reactive alkenes.141

 

Me

NO2

+

 

 

SOPh

 

Base

Yield (%)

 

 

 

 

 

 

 

 

 

Me

H

 

 

 

 

 

 

 

 

 

 

 

 

Et3N

0

 

 

 

 

 

 

 

 

 

 

 

 

base (1.0 equiv)

O2N

SOPh

(2)

TMG

60

 

 

MeCN

 

 

 

Me

Me

DBU

(4.106)

 

 

 

 

 

 

 

 

RT, 24 h

 

 

 

 

95

 

 

 

 

 

 

 

 

 

 

Me

NO2

+

 

 

Me

 

 

Base

Yield (%)

 

 

 

 

 

 

CO2Me

 

 

Me

H

 

 

 

 

 

Et3N

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Me

 

 

 

base (1.0 equiv)

 

 

TMG

19

 

 

O2N

CO2Me

(3)

 

 

 

 

 

 

 

 

 

 

MeCN

 

 

 

DBU

(4.107)

 

 

 

 

 

 

 

 

 

 

 

 

RT, 24 h

Me

Me

 

61

The reaction of conjugated nitroalkenes with α,β-unsaturated esters, ketones, nitriles, and

sulfones is catalyzed by TMG to give the Michael adduct of allylic nitro compounds (Eq. 4.108).142

Me

 

 

TMG (0.1 equiv)

NO2

CN

 

 

 

Me

+

CN

 

 

 

(4.108)

NO2

MeCN

Me

 

 

 

 

 

 

 

 

 

72%

 

 

 

 

 

 

 

Tetraalkylammonium fluorides or metal fluorides are also effective as catalysts for the Michael addition of nitroalkanes (see, Table 4.2).143–145

In recent years, there has been increased recognition that water is an attractive medium for organic reactions from the environmental point of view. The Michael addition of various nitroalkanes to conjugated enones can be performed in NaOH (0.025 M) and in the presence of cetyltrimethylammonium chloride (CTACl) as cationic surfactant in the absence of organic solvents (Eq. 4.109).146 The Michael addition of nitromethane to methyl acrylate is carried out in water using NaOH as a base to give the mono adduct (Table 4.2).147

 

 

 

 

 

 

 

O

Me

NO2

 

 

Me NaOH (0.025 M)

O2N

(4.109)

 

 

+

 

 

 

 

Me

Me

H

 

 

CTACl, RT, 1 h

 

 

O

 

Me

Me

 

 

 

4.3 MICHAEL ADDITION OF NITROALKANES

105

Table 4.2. Michael Addition to nitro compounds

Nitro compound

 

Alkenes

 

Base/conditions

Product (yield, %)

 

Ref.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

O

 

 

 

 

 

 

CH

NO

2

(CH ) CO

Me

TMG/RT, 2 days

 

(CH

) CO

Me

(83)

137

3

 

 

2 6

2

 

 

 

 

 

2 6

2

 

 

 

 

 

 

 

 

 

 

 

 

CH2NO2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NO2

 

 

 

CH3(CH2)4NO2

O O

O

 

 

TMG

 

 

 

 

 

(64)

139

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

O

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CH3NO2

O

 

 

 

TMG

O

 

NO2

 

(77)

140

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(CH3)2CHNO2

PhCH=CHC(O)Ph

Bu4NF SiO2/DMF,

Ph

Ph

 

(65)

143

Me

 

O

 

 

 

 

 

 

 

 

 

20 °C, 3 h

 

 

 

 

 

 

 

 

 

 

 

 

Me NO2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C7H13NO2

 

Me

 

 

CsF-Al2O3/20 °C, 1 h

 

NO2

Me

(85)

144

 

 

 

 

C6H13

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C2H5NO2

 

 

O

CsF-Si(OR)4/80 °C,

Me

 

N

O

 

(74)

145

Me

N

 

 

 

 

 

 

 

 

 

 

 

 

 

74 h

 

 

 

 

 

 

 

 

 

 

 

O

 

 

Me

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NO2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CH3NO2

 

CO2Me

 

 

NaOH, H2O/20 °C

 

O2N

 

 

 

(57)

147

 

 

 

 

 

 

 

 

MeO2C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C2H5NO2

 

 

 

 

KF-basic

 

 

NO2

 

(100)

148

 

 

 

 

 

 

 

Al

O /THF, RT, 24 h

 

 

 

 

 

 

 

 

 

 

 

 

2

3

 

 

 

 

 

 

 

 

 

 

MeMe

 

 

 

 

Me Me

 

 

 

 

 

CH3NO2

 

 

DBU

Me

 

CO2Et

(40)

180

Me

CO2Et

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O2N

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CH3NO2

 

S

 

 

DBU

O2N

 

S

 

 

(85)

181

Ph

N

 

 

Ph

 

N

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H CO2Me

 

 

O

CO

Me

 

 

CH3NO2

Me3SiO

 

 

Triton B

 

 

 

2

 

(75)

182

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NO2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[NC(H2C)2]3

 

 

 

 

 

 

 

 

NC

 

 

 

 

 

 

 

DBU

[NC(H2C)2]3

 

 

(40)

183

 

 

NO2

 

CN

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NO2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CF

 

 

 

 

 

 

 

F3C NO2

 

 

 

 

 

3

 

Me

 

 

Al2O3

 

 

 

Me

 

(85)

184

H3C

NO2

 

 

 

Me

 

 

 

 

O

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

106 MICHAEL ADDITION

Ytterbium triflate is an extremely effective catalyst for the Michael addition of α-nitro esters to enones in water (Eq. 4.110).149

 

 

 

O

Me CO2Et

Me

Yb(OTf)

O2N

+

 

3

Me (4.110)

 

 

NO2

O

H2O, RT

Me CO2Et

 

 

 

98%

The heterogeneous catalytic systems have some advantages over homogeneous reactions. Chemical transformations under heterogeneous conditions can occur with better efficiencies, higher purity of products, and easier work-up. Ballini and coworkers have found that commercial amberlyst A-27 is the best choice for the Michael addition of nitroalkanes with β-substituted alkene acceptors (Eq. 4.111).150 The reaction is also carried out by potassium carbonate in the presence of Aliquat 336 under ultrasonic irradiation (Eq. 4.112).151

 

 

 

 

 

 

 

 

 

 

O

 

Me

NO2

+

 

Me Amberlyst A-21

O2N

Me

(4.111)

Me

H

 

 

Solvent Free

 

 

 

O

 

Me

Me

 

 

 

 

RT, 25 h

 

 

 

 

 

 

 

 

75%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

K2CO3

 

Ph

 

Me

NO2

 

 

 

 

 

O2N

CO2Me

 

+

Ph

 

 

 

Aliquat 336

(4.112)

 

 

CO2Me

 

 

 

 

 

Me

H

 

)))), 90 h

Me Me

 

 

 

 

 

 

 

 

 

 

 

 

 

 

70%

 

Recently very reactive solid bases have been devised, which are prepared by derivatization

of amorphous silica and hexagonal mesoporous silica (HMS) with the dimethylaminopropyl group (Eq. 4.113).151b

 

Me

O

O

 

N

 

Me

Si(OMe)

 

 

3

+

NO2

 

(4.113)

 

 

 

HMS, RT, 2.5 h

 

 

 

NO2

 

 

93%

In Table 4.1, the Michael addition of nitro compounds to various electron deficient alkenes is shown.

The Michael addition of nitro compounds is a useful method for the preparation of various natural products. The Michael addition of nitroalkanes to dehydroalanines gives γ-nitro-α- amino acids, which provides a convenient synthesis of side-chain modified α-amino acids (Eq. 4.114).152 Transformations of γ-nitro-α-amino acid derivatives into α-amino acids occur by reductive denitration (see Section 7.2) into γ-oxygenated α-amino acids by the Nef reaction (Eq.

Me

Me

CO2Me

 

Bu4NF

O2N

CO2Me

 

 

 

+

 

 

 

 

Me

Me NHCbz

(4.114)

O2N

H

 

 

RT, 22 h

NHCbz

 

 

85%

 

 

 

 

 

 

 

 

 

 

O2N

CO2Me

Bu SnH

H

CO2Me

 

 

 

 

 

 

 

 

3

 

Me Me NHCbz

(4.115)

 

Me

Me NHCbz

 

AIBN

 

 

 

 

 

67%

 

 

 

 

 

 

 

 

 

 

 

 

4.3

MICHAEL ADDITION OF NITROALKANES

107

 

 

 

 

 

 

NH

+

 

 

 

 

 

 

 

 

3

 

 

 

Me

Me

KOH-H2O

O2N

CO2-

 

OHC CO H + NH

 

+

 

(4.116)

3

 

 

 

2

O2N

H

 

Me

Me

 

 

 

 

 

 

 

 

 

 

 

 

 

50%

 

 

4.115).153 Condensation of glyoxalic acid, nitroalkanes, and amines provides a simple method for β-nitro-α-amino acids (Eq. 4.116).154

The base-catalyzed reaction of nitromethane with α-amidoalkyl sulfones gives the nitro compounds as in Eq. 4.117; the nitromethyl group is converted into a carboxylic group to give α-amino acids by the Nef reaction using KMnO4.155

O

SO2Ph

NaH-CH3NO2

 

 

 

 

 

 

 

 

 

 

(4.117)

Ph N

Ph

THF, RT, 1 h

 

 

 

 

 

 

 

H

 

 

 

 

 

 

 

 

 

O

 

NO2

 

O

CO2H

 

 

 

 

 

 

 

 

 

 

 

 

KMnO4

 

 

 

Ph

N

Ph

 

Ph

N

Ph

 

 

H

 

 

 

 

H

 

 

 

88%

 

 

 

 

90%

 

The Michael addition of nitroalkanes to α,β-unsaturated ketones followed by the Nef reaction has been extensively used as a method for the conjugated addition of acyl anions to enones (see

Section 6.1, Nef Reaction). This strategy is one of the best methods for the preparation of 1,4-dicarbonyl compounds.156a–h Various natural products have been prepared via this route.157 For

example, cis-jasmone is prepared from readily available materials, as shown in Scheme 4.19.156f

CHO

 

 

O

 

O

O

 

 

 

 

 

 

1) Bu3P

 

 

O

O

 

O

+

 

 

 

 

 

 

2) H+, HO

OH

 

NO2

TMG

 

NO2

CH3NO2

 

 

62%

 

 

95%

O

 

O

 

O

 

H2O2

 

 

O

H+

 

CHO

K2CO3

 

 

 

 

 

 

O

 

 

 

O

 

 

 

 

 

 

 

85%

 

 

90%

 

 

O

 

 

O

 

 

 

 

OH

 

 

Ph3P=CHCH2CH3

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

60%

 

 

83%

 

 

 

Scheme 4.19.

 

 

O

 

 

 

O

 

 

 

 

CH3NO2

 

 

 

 

CO2Me

 

CO

Me

 

TMG

 

2

 

 

 

 

NO2

 

 

 

 

 

 

O

 

O

 

 

 

70%

 

 

 

 

 

 

CO2Me

(Nef)

 

 

CO2Me

Wittig

 

 

 

 

 

 

 

1. NaOMe, MeOH

 

 

 

 

 

 

2. H2SO4

CHO

71%

 

O

 

 

 

 

 

 

 

CH2NO2

 

CHO

 

 

 

Scheme 4.20.

108 MICHAEL ADDITION

The Michael addition of nitromethane to cyclopentenone derivatives is used for synthesis of prostaglandins (Scheme 4.20).158 Here, the anion of nitromethane is used as a formyl anion synthon.

Ballini and coworkers have used the Michael addition of nitro compounds followed by the Nef reaction for the synthesis of various spiroketalic pheromones (Scheme 4.21).159

 

O

 

H

O

O

MeNO2 +

Al2O3

 

O

H

 

 

 

 

 

O

NO2

 

 

 

NO

 

 

 

 

 

2

 

62%

 

 

 

53%

OH

OH

 

 

 

H

NaBH4

TiCl3

 

 

 

 

 

+

O

 

 

 

O

 

NO2

 

 

 

H

O

 

O

 

53%

 

 

 

 

 

Scheme 4.21.

 

 

 

 

Asymmetric synthesis of spiroketalic pheromones is also reported, in which the asymmetric reduction of carbonyl group is carried out with baker’s yeast (Scheme 4.22).160

 

 

 

 

 

O

 

O

 

 

OH

 

OH

O

 

amberlyst A-21

 

baker's yeast

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NO2

 

 

 

 

nitromethane

NO2

 

 

 

 

3 days

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(2S, 8S)

 

 

 

 

 

 

 

 

 

 

 

 

 

58%

 

 

 

 

 

 

 

OH

OH

 

 

 

 

O

 

 

O

1) NaOH, EtOH

 

 

 

 

O

 

O

 

 

 

 

 

 

 

+

 

 

 

 

 

 

 

 

 

 

 

(2S, 5R, 7S)

(2S, 5S, 7S)

2) H2SO4, n-hexane,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H2O, 0 ºC,1 h

 

O

 

 

 

 

 

(Z, Z)

 

(E, E)

 

 

 

 

 

 

 

 

 

 

41% (1:3)

 

 

Scheme 4.22.

The Michael addition of nitro compounds to electron-deficient alkynes affords allylic nitro

compounds in good yields, in which KF-n-Bu4NCl in DMSO is used as a base and solvent (Eq. 4.118).161

 

 

O

NO2 O

NO2

1) KF, n-Bu4NCl

(4.118)

 

 

2) CO2Me

3) H2C=CHC(O)Me

53%

A short enantioselective synthesis of (–)-(R,R)-pyrenophorin, a naturally occurring anti-fun- gal 16-membered macrolide dilactone, is prepared from (S)-5-nitropentan-2-ol via the Michael addition and Nef reaction (Scheme 4.23).162 The choice of base is important to get the E-alkene in the Michael addition, for other bases give a mixture of E and Z-alkenes. The requisite chiral (S)-5-nitropentan-2-ol is prepared by enantioselective reduction of 5-nitropentan-2-one with baker’s yeast.163

 

 

 

 

 

4.3

MICHAEL ADDITION OF NITROALKANES

109

 

OH

 

OAc

 

 

 

 

 

OAc

 

O

 

 

 

 

 

KF, Bu4NBr,

 

 

 

 

 

 

 

Ac O, py, RT

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

OMe

 

 

 

 

 

 

 

 

 

DMSO

 

 

NO2

 

 

 

 

 

 

 

 

 

 

 

 

 

NO2

 

NO2 methyl propiolate

 

 

 

 

98%

 

 

 

 

 

 

 

62%

 

 

 

 

 

OAc

 

O

 

 

 

 

 

OAc

O

 

 

15% TiCl3, pH 5.3

 

 

OMe

HO(CH2)2OH

 

 

O

O

OMe

 

 

 

 

 

O

 

p-TsOH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

60%

 

 

 

 

 

 

 

95%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

OH

 

O

 

 

 

 

 

 

O

 

 

KOH

 

OMe

 

 

 

 

 

O

O

 

 

 

 

 

O

O

 

 

 

 

 

 

 

 

 

MeOH

 

 

O

95%

O

 

 

(–)-(R, R)-Pyrenophorin I

Scheme 4.23.

Conjugate addition of nitroalkanes to allyl Baylis-Hillman acetates in the presence of NaOH (0.6 N) in THF gives 2-alkylidene-4-nitro ketones with high stereoselectivity; these are converted via the Nef reaction into the corresponding 1,4-diketones (Eq. 4.119).164

Et

 

 

 

 

 

 

OAc

 

NaOH

 

 

 

+

MeCH2NO2

 

 

 

 

 

 

 

 

THF, 0–20 ºC

 

O

 

 

 

 

 

 

 

 

Me

 

NO2

 

 

O

 

Et

 

 

 

 

 

NaOH

Et

 

 

Me

 

Me (4.119)

 

 

 

 

 

 

 

O

H+, MeOH

 

Me

O

 

 

 

–50 ºC

Me

 

78%

 

 

 

61%

Polyfunctionalized nitro compounds are prepared by the Michael addition using 2-alkenyl- substituted 2-siloxycyclopropanecarboxylates as Michael acceptors (Eq. 4.120).165

 

 

 

 

O

Me3SiO

CO2Me

NO2

Triton B

CO2Me (4.120)

+

 

 

 

 

NO2

 

 

 

 

 

 

 

 

80%

Newkome and coworkers have developed synthesis of dendritic molecules using the Michael addition of nitromethane to α,β-unsaturated esters as a key reaction (Scheme 4.24).166

The addition of alkyl nitronate anions to imines in the presence of a Lewis acid proceeds in high yield with up to 10:1 diastereoselection favoring the anti isomer. This reaction is used for the stereoselective synthesis of 1,2-diamines (Eq. 4.121).167 Scandium triflate catalyzes the addition of 1-trimethylsilyl nitropropanoate to imines with a similar selectivity.35

110 MICHAEL ADDITION

O

 

OH

 

O2N

OH

 

 

 

 

O

 

 

OH

 

O

 

 

+

DCC, HOBT

R

O

DMF

 

 

 

 

O

 

3 H2N

O

 

 

 

 

O

 

 

O

 

O

 

 

DCC: dicyclohexylcarbodiimide

HOBT: 1-hydroxybenzotriazole

O

 

 

 

O O

 

 

 

O

 

 

O

O

 

 

O

HN

 

 

 

 

 

O

NH

 

O

O

O

 

OH

 

O

 

OH

O

O2N

 

O

 

 

 

 

 

 

OH

 

 

 

O

 

R

DCC, HOBT

 

 

 

 

DMF

 

 

 

 

O

 

 

O

O

 

 

O

 

O NHO

 

 

O O

O

 

O

 

 

O

 

 

 

 

 

O

 

 

O

 

 

 

O

 

 

NH

 

 

 

 

O

 

 

H

 

 

 

 

O

 

 

N

 

 

 

O

 

O

 

 

NH

 

O

 

O

 

 

O O

 

 

 

 

O

 

O

O

O

 

 

 

 

O

 

 

 

R = NO2

H2, Raney Ni

 

R = NH2

 

 

 

O

O

O

 

 

 

 

 

 

O

 

O O

 

 

 

 

 

 

 

O

 

HN

 

 

O O

O

O

 

 

 

 

 

O

 

 

 

 

 

HN

 

 

O

 

 

 

NH

 

 

O

 

 

 

 

H

 

 

H

 

N

 

 

N

 

 

O

 

O

 

NH

O

 

O

 

NH

 

 

 

 

O

O

 

 

O

 

O

 

 

O

O

O

O

O

O

O

O

O O

O

O

 

O

O

NH HN

 

 

 

 

 

 

 

 

 

O

 

 

 

O

 

 

 

 

 

 

O O

O

 

 

O

 

 

 

 

 

 

O

 

 

 

O O

O

 

 

 

 

 

O

O

R = NO2

 

 

 

 

 

 

 

 

 

 

 

H2, Raney Ni

 

 

 

 

 

 

R = NH2

 

 

 

 

 

 

 

 

 

Scheme 4.24.

 

 

 

 

 

 

1) n-BuLi, THF, –78 ºC

 

 

PhH2C

 

 

 

 

NH

 

NO2

2) PhCH2N=CHPh

 

 

 

Ph

Et

(4.121)

3) THF, AcOH, –78 to 0 ºC

 

 

 

 

NO2

 

 

 

 

 

 

 

 

 

 

 

 

 

95% (anti/syn = 10/1)

 

Соседние файлы в предмете Химия