Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Baer M., Billing G.D. (eds.) - The role of degenerate states in chemistry (Adv.Chem.Phys. special issue, Wiley, 2002)

.pdf
Скачиваний:
18
Добавлен:
15.08.2013
Размер:
4.29 Mб
Скачать

504

yehuda haas and shmuel zilberg

125.R. Izzo and M. Klessinger, J. Comput. Chem. 21, 52 (2000).

126.E. Havinga and J. Cornelisse, Pure Appl. Chem. 47, 1 (1976).

127.N. J. Turro, Modern Molecular Photochemistry, Bejamin/Cummings, Menlo Park, CA, 1978.

128.D. I. Schuster, G. Lem, and N. A. Kaprinidis, Chem. Rev. 93, 3 (1991).

129.J. Michl, Photochem. Photobiol. 25, 141 (1977).

130.L. Salem and C. Rowland, Angew. Chem. Int. Ed. Engl. 11, 92 (1972).

131.L. Salem, Science. 191, 822 (1976).

132.J. A. Berson, Acc. Chem. Res. 11, 466 (1978).

133.J. Michl, Mol. Photochem. 4, 243–257 (1972).

134.J. Michl, Top. Curr. Chem. 46, 1 (1974).

135. J. Michl, in ‘‘Photochemical Reactions: Correlation Diagrams and Energy Barriers,’’ G. Klopman, ed., Chemical Reactivity and Reaction Paths, John Wiley & Sons, Inc., New York, 1974.

136.J. Michl and V. Bonacic-Koutecky, Electronic Aspects of Organic Photochemistry, John Wiley & sons; Inc. New York, 1990.

137.L. Salem, J. Am. Chem. Soc. 96, 3486 (1974).

138.R. McWeeny and B. T. Sutcliffe, Methods of Molecular Quantum Mechanics, Academic Press, 1969, Chap. 6.

139.H. Eyring, J. Walter, and G. E. Kimball, Quantum Chemistry, John Wiley & Sons, Inc., New York, 1944, Chap. 13.

140.L. Pauling, J. Chem. Phys. 1, 280 (1933).

The Role of Degenerate States in Chemistry: Advances in Chemical Physics, Volume 124.

Edited by Michael Baer and Gert Due Billing. Series Editors I. Prigogine and Stuart A. Rice. Copyright # 2002 John Wiley & Sons, Inc.

ISBNs: 0-471-43817-0 (Hardback); 0-471-43346-2 (Electronic)

THE CRUDE BORN–OPPENHEIMER ADIABATIC APPROXIMATION OF MOLECULAR POTENTIAL ENERGIES

K. K. LIANG, J. C. JIANG, V. V. KISLOV, A. M. MEBEL, and S. H. LIN

Institute of Atomic and Molecular Sciences,

Academia Sinica, Taipei, Taiwan, ROC

M. HAYASHI

Center for Condensed Matter Sciences,

National Taiwan University, Taipei, Taiwan, ROC

CONTENTS

I.Introduction

II. Crude Born–Oppenheimer Approximation III. Hydrogen Molecule: Hamiltonian

IV. Matrix Elements of Angular-Momentum-Adopted Gaussian Functions

A.Normalization Factor

B.The Overlap Integrals

C.Interaction Terms with the Nuclei

D.Derivatives of the Coulomb Potential

1.First-Order Derivatives

2.Second-Order Derivatives

V. Hydrogen Molecule: Minimum Basis Set Calculation VI. Conclusions

Appendix A: Useful Integrals Acknowledgments References

505

506

k. k. liang et al.

I.INTRODUCTION

The introduction of the conventional Born–Oppenheimer (BO) approximation introduces the concept of electronic potential energy surface (PES), which lays the foundation of the majority of our concepts about molecular systems. However, the crossing of two adiabatic PES is also a consequence of such an adiabatic approximation. There has been much research done in an attempt to remove the singularity brought about by this crossing of multi-dimensional surfaces, namely, the conical intersections. Recently, characterization of conical intersection in molecules and the role played by conical intersection in femtosecond processes have attracted considerable attention [1–4]. The conical intersection is conventionally determined by the use of the adiabatic approximation. There are a number of so-called adiabatic approximations for the time-independent quantum mechanical treatment of molecules [5–13]. The most prominent of them are the BO approximation and the Born–Huang (BH) approximation. This latter name of BH approximation was suggested by Ballhausen and Hansen, but the theory was actually formulated by Born himself. It has also been described as the BO correction, the variational BO approximation and the Born–Handy formula. First, these approximations all start with the separation of the total molecular Hamiltonian into terms of different magnitude. Second, it is very common that, while trying to sort out terms of different magnitude, attempts were given to argue that the crossing terms coupling the momenta of the various atoms in the molecule are negligible after proper transformations. Ballhausen and Hansen made a very instructive comment saying that [8] ‘‘The effect of these cross-terms is to correlate the internal motion, so to speak, in such a way that the linear momentum as well as the angular momentum of the entire molecule stay constant.’’ It is worth noting that actually these cross-terms are not only crucial for keeping the momentum constant, but also are important for keeping the energy constant. This point has not been proved rigorously, but it can be understood by noticing that the concept of electronic potential energy is a direct consequence of the adiabatic approximation. The negligence of the nuclear kinetic energy term and the fixation of the nuclear coordinates (and thus the frozening of the dependence of the cross-terms on the nuclear coordinates) are the causes of the dependence of the electronic energy on the nuclear configuration.

The separation of the electronic degrees of freedom from nuclear motions through adiabatic approximation has brought success to the ab initio quantum chemistry computations, but it is also the reason why we are confronted with the very difficult problem of potential energy crossing, in particular, the conical intersections. There may be other approaches, however, in which the energies of the states depend neither functionally nor parametrically on the nuclear configuration, and hence no crossing of energy levels may occur. If an approach like this can

the crude born–oppenheimer adiabatic approximation

507

be developed, and if it is computationally tractable, then it may be a good method complement to the contemporary quantum chemistry packages for treating the cases in which potential energy surfaces crossing may happen in the traditional approach.

An alternative approximation scheme, also proposed by Born and Oppenheimer [5–7], employed the straightforward perturbation method. To tell the difference between these two different BO approximation, we call the latter the crude BOA (CBOA). A main purpose of this chapter is to study the original BO approximation, which is often referred to as the crude BO approximation and to develop this approximation into a practical method for computing potential energy surfaces of molecules.

In this chapter, we demonstrate the approach of the CBOA, and show that to carry out different orders of perturbation, the ability to calculate the matrix elements of the derivatives of Coulomb interaction with respect to nuclear coordinates is essential. Therefore, we studied the case of the diatomic molecule, and here we demonstrate the basic skill of computing the relevant matrix elements in Gaussian basis sets. The formulas for diatomic molecules, up to the second derivatives of the Coulomb interaction, are shown here to demonstrate that some basic techniques can be developed to carry out the calculation of the matrix elements of even higher derivatives. The formulas obtained may be complicated. First, they are shown to be nonsingular. Second, the Gaussian basis set with angular momentum can be dealt with in similar ways. Third, they are expressed as multiple finite sums of certain simple functions, of order up to the angular momentum of the basis functions, and thus they can be computed efficiently and accurately. We show the application of this approach on the H2 molecule. The calculated equilibrium position and force constant seem to be reasonable. To obtain more reliable results, we have to employ a larger basis set to higher orders of perturbation to calculate the equilibrium geometry and wave functions.

II.CRUDE BORN–OPPENHEIMER APPROXIMATION

The theory discussed in this section is based on the work of Born and others [5,7]. However, some of the approaches that are not suitable for our need are modified, and proper notations are adopted accordingly.

For a molecular system, we shall separate the total Hamiltonian into three parts:

^ ^

^

ð1Þ

H ¼ Te þ Vðr; RÞ þ TN

^

The T operators are the usual kinetic energy operators, and the potential energy Vðr; RÞ includes all of the Coulomb interactions:

 

e2

X

1

X

ZA

 

e2

X

ZAZB

 

Vðr; RÞ ¼

2

i¼6 j

ri j

e2

rA;i

þ

2

A¼6 B

RAB

ð2Þ

 

 

 

A;i

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

508

k. k. liang et al.

Let us consider the simplified Hamiltonian in which the nuclear kinetic energy term is neglected. This also implies that the nuclei are fixed at a certain configuration, and the Hamiltonian describes only the electronic degrees of freedom. This electronic Hamiltonian is

^

^

ð3Þ

H0

ðr; RÞ ¼ Te þ Vðr; RÞ

and the complete adiabatic electronic problem to solve is

 

 

^

ð4Þ

 

H0jfni ¼ Unjfni

Note that the last term in expression (2) of V does not depend on electronic

^

coordinates, and therefore it may be neglected in H0. The adiabatic Hamiltonian still depends parametrically on R, and so is the electronic wave funcion jfi. If we expand the nuclear coordinates or some of the nuclear coordinates with respect to a given configuration, that is, if we define

R ¼ R0 þ kR

ð5Þ

where k is a natural perturbation parameter that will be described later, then we shall expand the Hamiltonian in powers of k as

^

^ ð0Þ

 

 

 

^ ð1Þ

 

2

^ ð1Þ

þ

ð6Þ

H0 ¼ H0

 

þ kH0

þ k

H0

Here

 

 

 

 

 

 

 

 

 

 

 

 

 

^ ð0Þ

¼

^

ðr; R0Þ

 

 

 

 

ð7Þ

H0

H0

¼

 

 

 

^ ð1Þ

 

X

 

^

 

 

 

 

 

 

 

 

 

 

qH0

 

 

 

 

 

H0

¼

 

 

 

 

 

 

R R0 Ri

 

ð8Þ

 

i

 

qRi

 

^ ð2Þ

 

1

X

2

^

 

¼

 

 

¼

 

 

 

 

q

H0

R R0 RiRj

ð9Þ

H0

 

 

 

2 i; j

qRiqRj

.

.

.

Note that the electronic kinetic energy operator does not depend on the nuclear configuration explicitly. Therefore, we can conclude that

 

 

X

 

¼

 

 

^ ð1Þ

 

 

 

 

qV

 

 

H0

¼

 

i

qRi R R0 Ri

ð10Þ

 

 

 

X

 

q2V

¼

 

^ ð2Þ

¼

1

 

 

 

R R0 RiRj

ð11Þ

H0

2 i; j

qRiqRj

.

.

.

the crude born–oppenheimer adiabatic approximation

509

The electronic wave functions and electronic energies are also expanded

 

jfi ¼ jfð0Þi þ kfð1Þ þ k2jfð2Þi þ

ð12Þ

Un ¼ Unð0Þ þ kUnð1Þ þ k2Unð2Þ þ

ð13Þ

In the following, it shall always be assumed that the zeroth-order solution is known, that is, we have a complete set of eigenvalues and wave functions, labeled by the electronic quantum number n, which satisfy

^ ð0Þ

0

0

0

ð14Þ

H0

jfnð

Þi ¼ Unð

Þjfnð Þi

Next, we shall consider how the nuclear kinetic energy is taken into consideration perturbatively. The natural perturbation index k is chosen to be

 

¼r0

ð Þ

k

4

m

15

M

 

 

 

where m is the electron mass and M0 is some quantity to do with the mass of

^

nuclei. In rectangular coordinates, TN can be written as

 

X

 

 

 

m M0

 

q2

 

q2

q2

 

 

 

 

h2

 

 

 

 

 

 

T^N ¼

i

 

2m

 

M0

 

Mi

 

qXi2

þ

qYi2

þ

qZi2

 

¼ k4

X

h2

 

M0

 

q2

 

 

 

q2

 

 

 

q2

 

 

i

 

 

 

 

þ

 

þ

 

 

2m

Mi

qXi2

qYi2

qZi2

 

4

^

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ð16Þ

k

H1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Since the nuclear coordinates are expanded according to Eq. (5), we can write the derivatives in the kinetic energy expression as

 

q2

1

 

q2

 

 

 

¼

 

 

 

 

ð17Þ

qRi2

k2

qRi2

Thus, we have

 

 

 

 

 

 

 

 

4

^

 

2

^ ð2Þ

ð18Þ

k

H1

¼ k

H1

^ ð2Þ

where in H1 , all of the derivatives with respect to nuclear coordinates R are replaced by derivatives with respect to R , while the rest of the expression remains unchanged. In this case, the total Hamiltonian can be expanded into power series of k as

^ ^ ð0Þ

^ ð1Þ

þ k

2

^ ð2Þ

^ ð2Þ

þ

ð19Þ

H ¼ H0

þ kH0

 

H0

þ H1

510

k. k. liang et al.

The total Schro¨dinger equation is

^

ð20Þ

Hjcni ¼ Enjcni

where the energy and the wave function are also to be expanded into power series of k

jcni ¼ jcnð0Þi þ kjcnð1Þi þ k2jcnð2Þi þ

ð21Þ

En ¼ Enð0Þ þ kEnð1Þ þ k2Enð2Þ þ

ð22Þ

In the zeroth-order approximation,

 

 

 

^ ð0Þ

0

0

Þi ¼ 0

ð23Þ

ðH0

Unð ÞÞjfnð

^ ð0Þ

0

0

Þi ¼ 0

ð24Þ

ðH0

Enð ÞÞjcnð

^ ð0Þ

Since H0 is an operator on electronic degrees of freedom only, it can be summarized that

Eð0Þ

¼

Uð0Þ

ð

25

Þ

n

n

 

jcnð0Þi ¼ jwnð0Þijfnð0Þi

ð26Þ

Here, jwðn0Þi is an arbitrary function of nuclear coordinates. It cannot be determined from Eq. (24) alone, but has to be determined from higher ordered perturbation equations.

In the first-order approximation, we find

^ ð0Þ

0

1

^ ð1Þ

1

0

Þi

ðH0

Unð

ÞÞjfnð

Þi ¼ ðH0

Unð ÞÞjfnð

^ ð0Þ

0

1

^ ð1Þ

1

0

 

ðH0

Unð

ÞÞjcnð

Þi ¼ ðH0

Enð ÞÞjcnð Þi

The electronic wave functions can be found to be

ð1Þ

X

hfmð0ÞjH^0ð1Þjfnð0Þi

ð0Þ

 

Unð0Þ

 

Umð0Þ

jfm i

jfn i ¼

 

 

m¼6 n

 

 

 

 

The total energy, on the other hand, can be shown to follow:

Enð1Þ ¼ Unð1Þ ¼ 0

ð27Þ

ð28Þ

ð29Þ

ð30Þ

the crude born–oppenheimer adiabatic approximation

511

This requires that the initially chosen R0 be the equilibrium configuration of this electronic level. Also, we reach the conclusion that the wave function will be of the form

 

 

 

 

 

 

jcnð1Þi ¼ jwnð0Þcnð1Þi þ jwnð1Þcnð0Þi

 

 

 

 

 

 

 

 

 

 

ð31Þ

jwnð1Þi also has to be determined later.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the second-order approximation, we have

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

^ ð0Þ

 

0

2

 

^ ð1Þ

 

1

 

 

 

^ ð2Þ

 

 

^

ð2Þ

 

 

2

 

 

0

 

 

ð32Þ

 

ðH0

Unð Þ

Þjcnð Þi ¼ H0

 

jcnð Þi ðH0

þ H1

 

Enð Þ

Þjcnð Þi

 

 

^ ð0Þ

 

0

2

 

^ ð1Þ

 

1

 

 

 

^ ð2Þ

 

 

 

2

 

 

0

 

 

 

 

 

ð33Þ

 

ðH0

Unð Þ

Þjfnð Þi ¼ H0

 

jfnð Þi ðH0

Unð Þ

Þjfnð Þi

 

 

 

 

 

It can be shown that [7]

 

 

 

 

 

 

 

 

 

 

X

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

jfnð2Þi ¼ Cnnð2Þjfnð0Þi þ

Cnmð2Þjfmð0Þi

 

 

 

 

 

 

 

 

ð34Þ

 

 

 

 

 

 

m¼6 n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cð2Þ

 

 

1

 

 

X

hfmð0ÞjH^0ð1Þjfkð0Þihfkð0ÞjH^0jfnð0Þi

 

 

 

fð0Þ H^ ð2Þ fð0Þ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

nm

¼ Unð0Þ Umð0Þ "

 

 

 

 

 

Unð0Þ

 

 

Uð0Þ

 

 

 

 

þ h

m

j

0

 

j

n

i#

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

k¼6 n

 

 

 

 

 

 

 

 

 

 

k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ð35Þ

and

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

f

ð0Þ ^

 

0

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cnnð Þ ¼

 

X

 

 

H0

fð Þ

 

 

 

 

 

 

 

 

 

 

 

 

ð36Þ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

hUknð0Þj jUð0Þ i

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

k¼6 n

 

 

 

 

 

k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The full wave function and the electronic

potential energy

are

 

 

 

 

 

 

 

 

 

jcnð2Þi ¼ jwnð0Þfnð2Þi þ jwnð1Þfnð1Þi þ jwnð2Þfnð0Þi

 

 

 

 

 

 

 

ð37Þ

 

 

 

Uð2Þ

 

ð0Þ H^ ð2Þ

 

ð0Þ

 

 

X

jhfnð0ÞjH^0ð1Þjfmð0Þij2

 

 

 

 

 

38

 

 

 

 

n ¼ hfn j 0 jfn i þ

 

Unð0Þ

 

Umð0Þ

 

 

 

 

 

ð Þ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

m¼6 n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Furthermore, we obtain the equation of motion of the zeroth-order nuclear wave function:

^ ð2Þ

2

2 0

ð39Þ

ðH1

þ Unð Þ Enð ÞÞjwnð Þi ¼ 0

512

k. k. liang et al.

We can only determine Enð2Þ and jwðn0Þi up to now. Later, we shall demonstrate that this equation is just the equations of motion of harmonic nuclear vibrations. The set of eigenstates of Eq. (43) can be written as fjwnvig, symbolizing that they are the vibrational modes of the nth electronic level, where v ¼ ðv1; v2; . . . ; vN Þ if R is N dimensional, and vi is the vibrational quantum number of the ith mode.

In the third-order approximation, the equations are

^ ð0Þ

0

3

^ ð1Þ

 

2

^ ð2Þ

^ ð2Þ

2

1

 

 

ðH0

Unð ÞÞjcnð

Þi ¼ H0

jcnð Þi ðH0

þ H1

Enð ÞÞjcnð Þi

 

 

 

 

 

^ ð3Þ

3

0

 

 

 

 

ð40Þ

 

 

 

ðH0

 

Enð

ÞÞjcnð Þi

 

 

 

^ ð0Þ

0

3

^ ð1Þ

 

2

^ ð2Þ

2

1

^ ð3Þ

3

0

ðH0

Unð ÞÞjfnð

Þi ¼ H0

jfnð Þi ðH0

Unð Þ

Þjfnð Þi ðH0

Unð ÞÞjfnð Þi

 

 

 

 

 

 

 

 

 

 

 

ð41Þ

The electronic wave functions and potential energy can be determined in ways similar to those done in the first and second order. Here we wish to emphasize that, the full wave function in this order is

jcnð3Þi ¼ jwnð0Þfnð3Þi þ jwnð1Þfnð2Þi þ jwnð2Þfnð1Þi þ jwnð3Þfnð0Þi þ j fnð3Þi

ð42Þ

where j fnð3Þi satisfies

 

X

 

 

 

 

 

 

 

 

0

0 3

h2

 

M0

q

0

q

1

 

^ ð Þ

 

 

 

 

 

 

 

 

ðH0

Unð ÞÞj fnð Þi ¼

 

a;i

 

 

 

 

jwnð Þi!

 

jfnð Þi!

ð43Þ

m

Ma

qRa;i

qRa;i

This means that the electronic and nuclear wave functions cannot be separated anymore, and therefore the adiabatic approximation cannot be applied beyond the second-order perturbation.

In the following, we shall demonstrate techniques for calculating the electronic potential energy terms up to the second order. For simplicity, we shall study the case of H2 molecule, the simplest multi-electron diatomic molecule.

III.HYDROGEN MOLECULE: HAMILTONIAN

Consider a diatomic molecule as shown in Figure 1. The nuclear kinetic energy is expressed as

 

¼

2

M1

qX12

þ qY12

þ qZ12

þ M2

qX22

þ qY22

þ qZ22

ð Þ

^

 

h2

1

q2

q2

q2

1

q2

q2

q2

44

TN

 

 

 

 

 

 

 

 

 

 

the crude born–oppenheimer adiabatic approximation

513

Figure 1. A model two-atom molecule.

Transferring into the center-of-mass coordinates, where

 

 

 

 

 

R

0 ¼ ð

X

; Y

; Z

M1X1 þ M2X2

;

M1Y1 þ M2Y2

;

M1Z1 þ M2Z2

 

ð

45

Þ

 

0

0

 

0Þ ¼ M1 þ M2

M1 þ M2

M1 þ M2

 

R ¼ ðX; Y; ZÞ ¼ ðX2 X1; Y2 Y1; Z2 Z1Þ

 

 

ð46Þ

where R0 is the coordinate of the center of mass, one can rewrite the nuclear kinetic energy:

T^

h2

 

 

 

1

 

 

 

 

 

2

 

M1 þ M2

2

 

 

 

 

M1 þ M2 r0

 

 

 

 

 

 

N ¼

2

 

þ

M1M2

 

rR

 

 

 

h2

"

 

 

 

 

 

ðM1 þ M2Þ2

#

 

 

 

¼

2ðM1 þ M2Þ

r0 þ

 

 

M1M2

rR

 

 

 

 

 

 

h2

2

 

m

q

 

 

2 q

 

 

m

2

 

 

¼ k4

 

r0

þ

 

 

 

R

 

 

þ

 

r

 

ð47Þ

2m

R2

qR

qR

R2

Here, we have defined

 

r1 þ 2

ð

 

 

 

 

 

 

Þ

ð Þ

k

4

 

 

 

 

 

m

 

 

 

 

 

 

 

 

 

0:1285 for H2

 

 

48

 

 

M

M

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ðM1 þ M2Þ2

ð¼

4 for H

 

Þ

 

ð

49

Þ

m

M1M2

 

 

 

2

 

 

R ðR; XÞ ðR; y; fÞ

 

 

 

 

 

 

 

ð50Þ

2

 

 

 

q2

 

q2

 

 

 

q2

 

 

 

 

 

 

 

 

 

 

r0

¼

 

 

 

þ

 

þ

 

 

 

 

 

 

 

 

 

 

ð

51

Þ

qX02

qY02

qZ02

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

1

 

 

q

 

 

 

 

 

q

1 q2

 

 

 

 

 

 

rX

 

 

 

 

 

sin y

 

þ

 

 

 

 

 

ð52Þ

sin y

qy

qy

sin2 y

qf2