
- •Механика
- •Оглавление
- •Глава 1. Кинематика материальной точки
- •Глава 2. Динамика
- •Глава 3. Работа и энергия
- •Глава 4. Законы сохранения в механике
- •Глава 5. Механические волны
- •Глава 6. Молекулярное движение
- •Глава 7. Основы термодинамики
- •Глава 1. Кинематика материальной точки
- •Кинематика поступательного движения
- •Понятия и определения
- •Модуль вектора ускорения
- •1.2. Уравнения движения
- •1.2.1 Равномерно, прямолинейно движение.
- •1.2.2 Ускоренное, прямолинейное движение
- •1.2.3 Кинематика вращательного и колебательного движения Вращательное движение
- •При постоянной угловой скорости , угловой путь и угол поворота определяется из равенств:
- •Колебательное движение
- •Для самостоятельного изучения
- •1.3.1 Модуль касательного и нормального ускорения.
- •1.3.2 Равномерное криволинейное движение.
- •Сложение гармонических колебаний
- •1.4 Задания для самоконтроля знаний.
- •Глава 2. Динамика
- •2.1 Законы Ньютона.
- •2.2. Динамика поступательного движения тела
- •2.3. Динамика вращательного движения
- •2.4. Динамика колебательного движения
- •2.5. Принцип относительности Галилея. Неинерциальные системы отсчета
- •2.6 Для самостоятельного изучения
- •2.6.1. Понятие силы. Равнодействующая сила
- •2.6.2. Силы гравитационного взаимодействия
- •2.6.3.Силы трения
- •2.6.4.Сила вязкого трения и сопротивления среды.
- •2.6.5.Сила упругости. Закон Гука.
- •6. Колебания математического и физического маятников
- •2.7. Задания для самоконтроля знаний
- •Глава 3. Работа и энергия
- •3.1. Работа. Мощность
- •3.2. Энергия поступательного движения (кинетическая энергия)
- •И всегда положительна в любой системе отсчета.
- •3 Dr.3. Энергия взаимодействия (потенциальная энергия)
- •3.4. Работа и энергия вращательного движения
- •3.5. Энергия колебательного движения
- •3.6. Для самостоятельного изучения
- •3.6.1. Потенциальная энергия тела относительно поверхности Земли
- •3.6.2. Работа силы тяжести
- •3.6.3. Потенциальная энергия пружины
- •3.6.4. Потенциальный барьер и яма
- •3.7. Задание для самоконтроля знаний.
- •Лекция 6
- •Глава 4. Законы сохранения.
- •4.1 Закон сохранения импульса
- •4.2 Закон сохранения момента импульса
- •При составлении равенства (4.5) учтено, что и.
- •4.3 Закон сохранения энергии
- •4.4 Для самостоятельного изучения
- •Абсолютно неупругий удар
- •4.5. Задание для самоконтроля знаний
- •Глава 5. Механические волны
- •5.1 Продольные и поперечные волны
- •Уравнение плоской гармонической волны. Волновое уравнение.
- •5.3.Задания для самоконтроля знаний.
- •Глава 6.Молекулярное движение
- •6.1 Размеры и масса молекул
- •6.2. Движение и столкновение молекул газа
- •6.3 Давление и температура.
- •6.4 Скорость и энергия молекул [распределение Максвелла]
- •6.5 Диффузия, внутреннее трение, теплопроводность.
- •6.6 Давление идеального газа на стенку
- •6.7 Уравнение состояния идеального газа
- •Глава 7. Основы термодинамики
- •7.1. Термодинамическая система. Внутренняя энергия идеального газа
- •7.2. Работа и теплопередача
- •7.3. Первое начало термодинамики, термодинамические изопроцессы.
- •7.4 Теплоемкость
- •7.5 Обратимые и необратимые процессы. Термодинамическая вероятность. Энтропия.
- •7.6 Изменение энтропии в изопроцессах
- •7.7 Тепловая машина. Цикл Карно.
- •7.8. Для самостоятельного изучения
- •7.8.1. Второе начало термодинамики
- •Основные понятия в механике
- •Вес тела – сила, приложенная к опоре или подвесу, которые удерживают тело от свободного падения. При неподвижной опоре (подвесе) или при их равномерном движении вес тела равен силе тяжести.
- •Основные законы
- •Обозначения
4.4 Для самостоятельного изучения
4.4.1. Применение законов сохранения к упругому и неупругому соударению двух тел.
При соударении тела деформируются. При этом кинетическая энергия, которой обладали тела перед ударом, частично или полностью переходит в потенциальную энергию упругой деформации и во внутреннюю энергиютел.
Столкновения
могут быть упругими и неупругими. Их
предельные идеализированные случаи –
абсолютно упругий и абсолютно неупругий
удар.
При абсолютно упругом ударе (например, столкновении шаров из слоновой кости или закаленной стали) механическая энергия тел не переходит в другие, немеханические, виды энергии. При таком ударе кинетическая энергия тел полностью или частично переходит в потенциальную энергию упругой деформации. По завершении удара первоначальная форма тел полностью восстанавливается. В итоге потенциальная энергия упругой деформации снова переходит в кинетическую энергию и тела разлетаются со скоростями, величина и направление которых определяются законом сохранения механической энергии и законом сохранения полного импульса системы тел.
Пpи неупругом ударе (например столкновении шаров из воска, двух разноименных ионов с образованием молекулы, захвате свободного электрона положительным ионом и т.д.) тела не восстанавливают свою первоначальную форму, кинетическая энергия тел частично или полностью превращается во внутреннюю энергию. При абсолютно неупругом ударе тела движутся после удара как единое целое с одинаковой скоростью или покоятся. При абсолютно неупругом ударе закон сохранения механической энергии не соблюдается. Выполняется лишь закон сохранения импульса и закон сохранения суммарной энергии различных видов – механической и внутренней.
Рассмотрим случай центрального соударения двух однородных шаров. Удар называется центральным, если шары до удара движутся вдоль прямой, соединяющей их центры (рис 4.12).
Поскольку удар упругий, то механическая энергия не переходит в другие виды энергии а кинетическая энергия сохраняется:
,
(4.9)
где
,
,
,
– скорости шаров до и после удара.
Потенциальная энергия при упругом столкновении шаров не меняется закон сохранения импульса:
,
(4.10)
Уравнения (4.9) следует:
,
=
.
(4.11)
Из уравнения (4.10) с учетом проекции скоростей на ось Х:
.
(4.12)
Поделив левые и правые части уравнении
(4.11)
(4.12), получим:
(4.13)
Подставим (4.13) в (4.12):
,
.
.
(4.14)
По аналогии, подставим в формулу (4.13)
полученное значение для
:
. (4.15)
Рассмотрим частные случаи.
Массы шаров равны
.
Тогда
,
.
Если до столкновения второй шар покоился
,
то после столкновения первый шар
остановился
,
а второй будет двигаться со скоростью
.
2) Масса второго шара значительно больше массы первого (т2>> т1). Разделим числитель и знаменатель выражений (4.14) и (4.15) наm2:
;
.
Отношением
m1/m2пренебрегаем. Тогда
,
,
т.е. скорость большого шара практически
не меняется.
Если массивный шар покоился
,
то он покоится и после удара
,
а малый шар будет иметь скорость
.
Такой тип столкновения рассматривается
при расчете давления, оказываемого
молекулами газа на стенки сосуда.