Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Тез.лекц.Очно-заочн.,4.4г..doc
Скачиваний:
84
Добавлен:
16.05.2015
Размер:
3.39 Mб
Скачать

3.4. Основы кибернетического моделирования.

В современном научном знании весьма широко распространена тенденция построения кибернетических моделей объектов самых различных классов. «Кибернетический этап в исследовании сложных систем ознаменован существенным преобразованием «языка науки», характеризуется возможностью выражения основных особенностей этих систем в терминах теории информации и управления. Это сделало доступным их математический анализ. Кибернетическое моделирование используется и как общее эвристическое средство, и как искусственный организм, и как система-заменитель, и в функции демонстрационной. Использование кибернетической теории связи и управления для построения моделей в соответствующих областях основывается на максимальной общности ее законов и принципов: для объектов живой природы, социальных систем и технических систем. Широкое использование кибернетического моделирования позволяет рассматривать этот «логико-методологический» феномен как неотъемлемый элемент «интеллектуального климата» современной науки». В этой связи говорят об особом «кибернетическом стиле мышления», о «кибернетизации» научного знания.

С кибернетическим моделированием связываются возможные направления роста процессов теоретизации различных наук, повышение уровня теоретических исследований. Рассмотрим некоторые примеры, характеризующие включение кибернетических идей в другие понятийные системы. Анализ биологических систем с помощью кибернетического моделирования обычно связывают с необходимостью объяснения некоторых механизмов их функционирования (убедимся в этом ниже, рассматривая моделирование психической деятельности человека). В этом случае система кибернетических понятий и принципов оказывается источником гипотез относительно любых самоуправляемых систем, т.к. идеи связей и управления верны для этой области применения идей, новые классы факторов. Характеризуя процесс кибернетического моделирования, обращают внимание на следующие обстоятельства. Модель, будучи аналогом исследуемого явления, никогда не может достигнуть степени сложности последнего. При построении модели прибегают к известным упрощениям, цель которых – стремление отобразить не весь объект, а с максимальной полнотой охарактеризовать некоторый его «срез». Задача заключается в том, чтобы путем введения ряда упрощающих допущений выделить важные для исследования свойства. Создавая кибернетические модели, выделяют информационно-управленческие свойства. Все иные стороны этого объекта остаются вне рассмотрения. На чрезвычайную важность поисков путей исследования сложных систем методом наложения определенных упрощающих предположений указывает Р. Эшби. «В прошлом, – отмечает он, наблюдалось некоторое пренебрежение к упрощениям... Однако мы, занимающиеся исследованием сложных систем, не можем себе позволить такого пренебрежения. Исследователи сложных систем должны заниматься упрощенными формами, ибо всеобъемлющие исследования бывают зачастую совершенно невозможны». Анализируя процесс приложения кибернетического моделирования в различных областях знания, можно заметить расширение сферы применения кибернетических моделей: использование в науках о мозге, в социологии, в искусстве, в ряде технических наук. В частности, в современной измерительной технике нашли приложение информационные модели. Возникшая на их основе информационная теория измерения и измерительных устройств – это новый подраздел современной прикладной метрологии. В задачах самых различных классов используется принцип обратной связи.

Кибернетическое моделирование характеризуется тем, что в нём отсутствует непосредственное подобие физических процессов, происходящих в моделях, реальным процессам. В этом случае стремятся отобразить лишь некоторую функцию и рассматривают реальный объект как «чёрный ящик», имеющий ряд входов и выходов, и моделируют некоторые связи между ними. Чаще всего при использовании кибернетических моделей проводят анализ поведенческой стороны объекта при различных воздействиях внешней среды. Таким образом, в основе кибернетических моделей лежит отражение некоторых информационных процессов управления, что позволяет оценить поведение реального объекта. Для построения имитационной модели в этом случае необходимо выделить исследуемую функцию реального объекта, попытаться формализовать эту функцию в виде некоторых операторов связи между входом и выходом и воспроизвести на имитационной модели данную функцию, причём на базе совершенно иных математических соотношений и, естественно, иной физической реализации процесса.

Вопросы для самопроверки

    1. Что такое технологическая система? Какие существуют уровни технологических систем?

    2. Дайте определение понятию «параметрическая надёжность» технологических систем. Какими показателями она оценивается?

    3. Чем обусловлены отказы, связанные с технологией?

    4. Что такое параметрический отказ технологической системы?

    5. Какова цель расчёта надёжности технологических процессов?

    6. Перечислите основные этапы определения надёжности ТС по обеспечению показателей ТС?

  1. Охарактеризуйте метод кибернетического моделирования.

Рекомендуемая литература

  1. Автоматизация производственных процессов в машиностроении: учеб. для втузов / Н.М. Капустин, П.М. Кузнецов, А.Г. Схиртладзе и др.; под ред. Н.М. Капустина. – М.: Высш. шк., 2004.

2.Аверченков, В.И. Основы математического моделирования технических систем: учеб. пособие / В.И. Аверченков, В.П. Федоров., М.Л. Хейфец – Брянск: Изд-во БГТУ, 2004

3.Коршунов, Ю.М. Математические основы кибернетики: учебн. пособие для вузов / Ю.М. Коршунов. –М.: Энергия, 1987.

4.Кузин, Л.Т. Основы кибернетики: В 2 т. Т.2. Основы кибернетических

моделей: учебн. пособие для вузов / Л.Т. Кузин. – М.: «Энергия»,

1973.

4. Фёдоров, В.П. Математическое моделирование в машиностроении:

учебное пособие. / В.П.Фёдоров – Брянск: БГТУ, 2013.= 112 С.

Лекция 4. (Продолжение раздела 3)«Планирование и обработка результатов эксперимента»(2 часа)

План лекции:

4.1. Основные понятия корреляционного, регрессионного и дисперсионного анализов.

4.2. Пассивный и активный эксперимент, их место и роль в машиностроении. Основные принципы планирования эксперимента.

4.3. Ортогональное планирование первого порядка