Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Архив WinRAR / Rost SPSS.doc
Скачиваний:
61
Добавлен:
15.05.2015
Размер:
8.1 Mб
Скачать

7.3.5. Исходная матрица расстояний

По умолчанию в процедуре предполагается, что исходная матрица расстояний вводится в файле SPSS. Но подготовленная матрица расстояний у исследователя бывает весьма редко. Поэтому чаще используется возможность вычисления расстояний на основе имеющихся данных, которая реализуется в диалоговом окне команды в разделе Distancesвключения пунктаCreate distances from data. Здесь предусмотрен такой же широкий набор мер близости и расстояний, как и в иерархическом кластерном анализе. Их можно выбрать, воспользовавшись кнопкойMeasuresв том же разделеDistances, при этом можно определить, что визуализируется –матрица расстояний между объектами или переменными.

7.3.6. Пример построения шкал

В качестве примера исследуем данные по средней обеспеченности семей дорогостоящими предметами быта – электроникой, средствами транспорта и дачами (всего 9 предметов) в 38 территориальных общностях (данные RLMS, 1996 г.). В результате применения процедуры шкалирования территориальные общности должны расположиться в двумерном геометрическом пространстве, построенном исходя из расстояний по 9 пере­менным.

Для этого получим файл, в котором объектами будут территориальные общности, а переменными – обеспеченность семей этими предметами. Значения этих переменных – доли семей, обладающих этими предметами. Исходными данными здесь являются ответы на вопрос «Имеете ли Вы холодильник?», «Имеете ли Вы стиральную машину?» и т. д. (1 – да, 2 – нет, 9 – нет ответа) в файле анкет семьи.

Этот файл агрегируем по территориальным общностям (переменная PSU), сохранив доли семей, имеющих соответствующие предметы, в файлеproperty.sav:

AGGREGATE /OUTFILE = 'N:\USR\RLMS\property.SAV' /BREAK = psu /CC9.1A 'холодильник' CC9.3A 'стиральная машина' CC9.4A 'черно-белый телевизор' CC9.5A 'цветной телевизор' CC9.6A 'видеомагнитофон или видеоплейер' CC9.6.1A 'фен' CC9.7A 'легковой автомобиль' CC9.10A 'садовый домик' CC9.11A 'дача или другой дом' = PLT (2, CC9.1A CC9.3A CC9.4A CC9.5A CC9.6A CC9.6.1A CC9.7A CC9.10A CC9.11A).

Полученный файл используется для запуска процедуры многомерного шкалирования:

GET FILE 'N:\USR\RLMS\property.SAV'.

ERASE FILE = 'J:\TEMP\spssalsc.tmp'.

PROXIMITIES cc9.1a cc9.3a cc9.4a cc9.5a cc9.6a cc9.6.1a cc9.7a cc9.10a cc9.11a /PRINT NONE /MATRIX OUT('J:\TEMP\spssalsc.tmp')

/MEASURE = EUCLID /STANDARDIZE = NONE /VIEW = CASE.

SPLIT FILE OFF.

ALSCAL /MATRIX = IN('J:\TEMP\spssalsc.tmp') /LEVEL = ORDINAL /CONDITION = MATRIX /MODEL = EUCLID /CRITERIA = CONVERGE(.001) STRESSMIN(.005) ITER(30) CUTOFF(0) DIMENS(2,2) /PLOT = DEFAULT ALL /outfile = "scale.save" /PRINT = HEADER .

ERASE FILE = 'J:\TEMP\spssalsc.tmp'.

Далее, переменные Dim1иDim2, сохраненные подкомандой/outfile = "scale.save"с помощью команды менюMerge files, присоединяются к нашему файлуproperty.sav.

Проблема выяснить, как же интерпретируются наши шкалы. Для интерпретации можно изучить их связь с имеющимися данными, в частности c исходными переменными, по которым строилась матрица расстояний.

В нашем примере таблица ранговых корреляций с этими переменными свидетельствует о том, что первое измерение (Dim1) характеризует уровень благосостояния жителей территориальных образований в целом, второе измерение связано с приверженностью их садоводству.

Таблица 7.7