Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Архив WinRAR / Rost SPSS.doc
Скачиваний:
51
Добавлен:
15.05.2015
Размер:
8.1 Mб
Скачать

4.1.6. Множественные сравнения

Множественные сравнения являются одной из труднейших проблем в математической статистике. В действительности при анализе данных исследователи сталкиваются с ними на каждом шагу.

Пусть, например, мы рассматриваем 100 независимых таблиц сопряженности пар переменных, отбирая среди них «интересные» для анализа,с использованием критических значений хи-квадрат 5 %-го уровня значимости. Тогда при отсутствии связи переменных мы будем в среднем в таких испытаниях получать 5 «интересных» (значимых) таблиц, даже если связь между всеми переменными отсутствует. Таким образом, как бы ни были плохи данные, мы что-либо будем интерпретировать. Но при повторном сборе данных мы можем получить противоположные результаты. Вот что значит множественные сравнения!

Сравнение групповых средних  это одна из немногих задач, где удалось справиться с этой проблемой.

Суть задачи состоит в отборе значимых различий множества пар групп, определяемых переменной группирования. Сравнение пары средних мы научились делать с помощью процедуры T-TEST,и, казалось бы, можно, задавшись уровнем значимости, пропустить через этот тест все пары групп и отобрать различающиеся по заданному уровню. Однако, перебирая группы, мы перебираем множество случайных чисел и благодаря этому можем наткнуться на значимое отличие с гораздо большей вероятностью, чем при рассмотрении одной пары групп. В частности, если группы независимы и не связаны с тестируемой переменной, при 10 сравнениях по уровню значимости 0,05 мы с вероятностью 1– (1 – 0,05)10 = 0,4 случайно получим хотя бы одно «значимое» различие. Эту проблему мы уже рассматривали в разд. 3.2.

Для пояснения механизма работы тестов множественных сравнений остановимся на 3 из 20 тестов, реализованных в SPSS.

Согласно методу Бонферрони в случае множественных сравнений назначается более строгий уровень значимости для попарных сравнений. Он определяется так: задается уровень значимости для множественных сравнений mи в качестве попарного уровня значимости берется = (1/k)m., гдеk– число сравнений. ПустьAi– событие, состоящее в том, что мы в i-м сравнении выявили существенное отличие средних; когда средние совпадают, тогда, в соответствии с заданным уровнем значимости,P{Ai}<. Ясно, чтоP{A+A++Ak} ≤ P{A1} +P{A2} ++P{Ak} <k = m, поэтому метод Бонферрони гарантирует нас от ошибки с вероятностью, не меньшейm. В независимых сравнениях неравенствоP{A+A++Ak}<kбудет выполняться почти точно так, как 1 – (1 –) k. Критерий несколько жестче, чем необходимо, так как средние в группах связаны их взвешенная сумма равна общему среднему.

Метод Шеффе построен на контрастах. С его помощью проверяется гипотеза равенства нулю сразу всех контрастов, не только тех, что сравнивают пары групп. В результате он часто оказывается еще строже, чем критерий Бонферрони.

Критерий Тьюки основан на одновременных доверительных интервалах разности матожиданий в группах. Этот критерий из трех рассматриваемых, пожалуй, наиболее разумен. Предположение об одновременном равенстве разностей всех групповых матожиданий – слишком сильное предположение, в критерии Тьюки такого не предполагается.

В качестве примера рассмотрим различие среднего промедианного логарифма доходов в группах по образованию, группы которого несколько укрупнены:

RECODE v10 (4 5 = 4) (6 7 8 = 5) (ELSE = COPY) INTO w10.

VAR LAB w10 "образование".

VALUE LAB w10 1 "Высшее" 2 "н/высш" 3 "ср. спец" 4 "среднее" 5 "ниже среднего".

ONEWAY lnv14m BY w10 /STATISTICS DESCRIPTIVES HOMOGENEITY /POSTHOC = BTUKEY SCHEFFE BONFERRONI ALPHA(.05).

На основании полученной выдачи видим, что:

  • доверительные интервалы для высшего и неполного высшего образования не пересекаются (табл. 4.10);

  • дисперсии в группах различаются несущественно (см. тест Ливиня, табл. 4.11);

  • в целом наблюдается связь душевого дохода с образованием (в результате дисперсионного анализа отвергается гипотеза о равенстве средних, табл. 4.12);

  • выделились следующие две группы по образованию с неразличимыми средними: 2 – н/высшее, 5 – ниже среднего, 4 – среднее и 5 – ниже среднего, 4 – среднее, 3 – среднее спец., 1 – высшее (табл. 4.13);

  • попарные множественные сравнения показали, что единственная пара отличающихся по средним групп – это группы с неполным высшим и респондентов с высшим образованием (наблюдаемая значимость – 0,013, табл. 4.14).

Таблица 4.10