Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Н. Б.Алфутова, А.В.Устинов - Алгебра и теория чисел для математических школ.pdf
Скачиваний:
272
Добавлен:
17.05.2013
Размер:
2.09 Mб
Скачать

Приложение А

Программа курса

Вданное приложение помещена программа курса алгебры, читавшегося

вшколе им. А. Н. Колмогорова на двухгодичном потоке. Темы, взятые в квадратные скобки, включались в курс по усмотрению лектора.

Тема 1. Метод математической индукции. Натуральные числа. Принцип математической индукции. Доказательство тождеств и неравенств. Применение индукции в геометрии и комбинаторике.

Тема 2. Комбинаторика. Множества и операции с ними. Основные правила комбинаторики. Принцип Дирихле. Перестановки. Размещения с повторениями и без повторений. Перестановки с повторениями (анаграммы). Биномиальная и полиномиальная теоремы. Свойства биномиальных коэффициентов. Треугольник Паскаля и его свойства. Сочетания с повторениями. Функции на множествах. [Формула включений-исключений. Ее приложения.]

Тема 3. Целые числа. Простые числа. Делимость с остатком и без остатка. Алгоритм Евклида. Наибольший общий делитель и наименьшее общее кратное. Линейное представление наибольшего общего делителя. Решение неопределенных уравнений первой степени в целых числах. Основная теорема арифметики. Теоретико-числовые функции. [Формула Лежандра для максимальной степени простого числа, делящего факториал. Цепные дроби. Уравнение Пелля.]

Тема 4. Сравнения. Отношение эквивалентности. Классы вычетов. Сравнения и их свойства. Неразрешимость некоторых уравнений в целых числах. Полная и приведенная системы вычетов. Функция Эйлера и ее свойства. Решение сравнений с одним неизвестным. Теоремы Ферма, Эйлера, Вильсона. Длина периода бесконечной десятичной дроби рационального числа. Китайская теорема об остатках. [Признак делимости Паскаля.]

Тема 5. Рациональные и иррациональные числа. Доказательство иррациональности радикалов. Метод спуска. Теорема о рациональных корнях многочлена. Иррациональность значений тригонометрических функций. Сопряженные числа. Избавление от иррациональности в знаменателе. [Десятичное представление рациональных чисел. Свойства периодов.]

Тема 6. Многочлены. Квадратный трехчлен и фазовая плоскость. Результант двух многочленов второй степени. Деление многочленов с остатком. Алгоритм Евклида для многочленов. Линейное представление наибольшего общего делителя. Теорема Безу. Схема Горнера. Теорема о числе корней многочлена. Ряд Тэйлора для многочлена. Теорема единственности. Однознач-

254

Программа курса

ность разложения многочлена на неприводимые сомножители. Многочлены с кратными корнями. Избавление от кратных корней. Теорема Виета. Элементарные симметрические многочлены. Основная теорема о симметрических многочленах. Симметрические системы алгебраических уравнений. Интерполяционный многочлен Лагранжа. Формула Кардано. Формулировка теоремы Руффини – Абеля. Необходимость введения комплексных чисел. [Интерполяционный многочлен Ньютона. Правило знаков Декарта.]

Тема 7. Комплексные числа. Комплексные числа и операции с ними. Геометрическая интерпретация. Алгебраическая и тригонометрическая формы записи комплексных чисел; модуль и аргумент. Алгебраическое извлечение квадратного корня из комплексного числа. Решение квадратных уравнений над множеством комплексных чисел. Формулы Муавра и Эйлера. Корни из единицы. Решение уравнений третьей степени при помощи комплексных чисел. [Неприводимый случай кубического уравнения. Суммирование ряда обратных квадратов при помощи комплексных чисел и теоремы Виета.]

Тема 8. Отображения комплексной плоскости. Пути и отображения комплексной плоскости. Основная теорема алгебры. Разложение на неприводимые многочлены над действительными и комплексными числами. [Принцип аргумента. Теорема Штурма о корнях тригонометрического полинома.]

Тема 9. Неразрешимость трех классических задач на построение. Построения циркулем и линейкой с алгебраической точки зрения. Числовые поля. Понятие квадратичного расширения числового поля. Алгебраические числа. Трансцендентность числа π (без доказательства). Невозможность квадратуры круга. Теорема о невозможности построения циркулем и линейкой корней кубического уравнения. Невозможность удвоения куба. Невозможность трисекции угла. Невозможность построения правильного семиугольника. [Построение правильных пятиугольника и семнадцатиугольника.]

Тема 10. Последовательности и ряды. Арифметическая и геометрическая прогрессии. Метод конечных разностей. Суммирование последовательностей. Линейные рекуррентные последовательности второго порядка. Формула n-го члена. Метод производящих функций. Формальные степенные ряды. Числа Фибоначчи. Формула Бине.

Тема 11. Неравенства, уравнения, системы. Доказательство неравенств. Возвратные уравнения. Уравнения с целыми коэффициентами. Метод подстановок и сведение уравнений к системам. Тригонометрические замены. Приближенное решение алгебраических уравнений. Метод Ньютона. Метод итераций. Решение уравнений рекуррентного типа. Системы линейных уравнений. Аналитические методы решения задач с параметрами.

Приложение Б

Путеводитель

Указанная литература послужила источником задач и теоретического материала. Здесь также указаны ссылки на публикации, которые могут служить учебными пособиями или содержат более обширный материал по данной теме. Ссылки после названия главы указывают на литературу, которая имеет отношение к содержанию всей главы. Издания, выделенные жирным шрифтом содержат наиболее полную информацию по соответствующему вопросу.

1 Метод математической индукции: [16], [38], [51]. 1 Аксиома индукции: [32], [35], [52].

2 Тождества, неравенства и делимость: [7], [32], [35], [36], [58], [60], [65]. 3 Индукция в геометрии и комбинаторике: [1], [6], [9], [36], [58], [195].

2 Комбинаторика: [6], [14], [29].

1 Сложить или умножить?: [8], [30], [38], [51], [113], [148], [170]. 2 Принцип Дирихле: [26], [35], [36], [38], [46], [51], [93], [177].

3 Размещения, перестановки и сочетания: [8], [11], [13], [19], [30], [38], [39], [40], [51], [66], [71], [84], [101], [113], [165], [170], [173], [224], [225].

4 Формула включений и исключений: [30], [51], [104], [170], [236]. 5 Числа Каталана: [13], [74], [121], [232], [246].

3 Алгоритм Евклида и основная теорема арифметики: [5], [13],

[33], [34], [36], [37], [38], [42], [49].

1 Простые числа: [10], [16], [24], [30], [54], [80], [115], [116], [120], [192], [152], [154], [157], [159], [171], [176], [187], [215], [238].

2 Алгоритм Евклида: [9], [16], [24], [30], [35],[43], [59], [99], [104], [158], [175], [203], [209].

3 Мультипликативные функции: [39], [54], [103], [104], [134], [192], [160], [203], [137].

4 О том, как размножаются кролики: [9], [11], [41], [47], [54], [57], [83], [193], [172], [184], [196], [198], [235], [237].

5 Цепные дроби: [9], [24], [26], [28], [57], [88], [89], [175], [226], [243].

4 Арифметика остатков: [5], [13], [33], [37], [38], [42], [49], [50]. 1 Четность: [9], [26], [216].

2 Делимость: [26], [142], [177], [229], [203].

3 Сравнения: [24], [26], [79], [82], [105], [114], [125], [138], [142], [144], [150], [162], [167], [203].

4 Теоремы Ферма и Эйлера: [10], [15], [24], [114], [125], [144], [152], [188], [203], [238].

256

Путеводитель

5

Признаки делимости: [9], [10], [56], [69], [211].

6

Китайская теорема об остатках: [138], [146], [221].

5 Числа, дроби, системы счисления:

1 Рациональные и иррациональные числа: [5], [10], [16], [18], [26], [30], [32], [33], [37], [41], [48], [51], [136], [100], [119], [140], [151], [163], [167], [203], [219], [227], [228], [197], [199].

2 Систематические дроби: [15], [37], [127], [188], [218].

3 Двоичная и троичная системы счисления: [1], [13], [34], [123], [191], [200], [210], [231], [244], [245], [247], [248].

6 Многочлены: [7], [21], [25], [32], [41].

1 Квадратный трехчлен: [35], [43], [48], [50], [75], [90], [91], [94], [97], [98], [135], [139], [141], [147], [183], [212].

2 Алгоритм Евклида для многочленов и теорема Безу: [20], [23], [30], [50], [81], [111].

3 Разложение на множители: [22], [30], [43], [50], [222].

4 Многочлены с кратными корнями: [20], [23], [30], [43], [212]. 5 Теорема Виета: [22], [23], [44], [48], [50], [156], [168], [194].

6 Интерполяционный многочлен Лагранжа: [23], [30], [101], [194]. 7 Комплексные числа: [8], [20], [31], [63], [77], [126], [217].

1 Комплексная плоскость: [23], [32], [39], [41], [43], [47], [50], [51], [76], [107], [112], [122], [129], [178], [180], [186], [204], [208], [213], [224].

2 Преобразования комплексной плоскости: [17], [182].

8 Алгебра + геометрия:

1 Геометрия помогает алгебре: [26], [48], [109], [169], [242]. 2 Комплексные числа и геометрия: [17], [31], [77], [214]. 3 Тригонометрия: [41], [44], [50], [230].

9 Уравнения и системы: [41].

1 Уравнения третьей степени: [25], [43], [44], [50], [97], [124], [126], [145], [153], [174], [181], [189], [190], [212], [230], [239].

2 Тригонометрические замены: [72], [130].

3 Итерации: [19], [23], [34], [51], [55], [67], [92], [95], [110], [143], [161], [205]. 4 Системы линейных уравнений: [32], [36], [43], [50], [61], [64], [132],

[135].

10 Неравенства: [2], [27], [32], [34], [38], [48], [49], [51], [179].

1Различные неравенства: [3], [35], [41], [43], [47], [50], [53], [73], [78], [86], [87], [117], [128], [131], [139], [155], [164], [201], [202], [206], [207], [234], [240].

2 Суммы и минимумы: [73] 3 Выпуклость: [3], [60], [149], [233].

4 Симметричные неравенства: [133], [179].

11 Последовательности и ряды:

1Конечные разности: [10], [12], [13], [30], [37], [47], [70], [85], [101], [108],

[166].

2 Рекуррентные последовательности: [12], [13], [47], [57], [62], [100], [106].

Путеводитель

257

3 Производящие функции: [6], [19], [30], [45], [47], [57], [101], [102], [107], [112], [118], [165], [220], [223].

4 Многочлены Гаусса: [21], [30], [41].

12 Шутки и ошибки: [4], [9], [13], [39], [96].