
- •А.Д. Чередов организация эвм и систем
- •Введение
- •Архитектуры, характеристики, классификация эвм
- •1.1. Однопроцессорные архитектуры эвм
- •Название фирм и разработанных ими risc-процессоров
- •Максимальное и среднее число команд, выполняемых в одном машинном цикле
- •1.2. Технические и эксплуатационные характеристики эвм
- •Результаты тестирования процессоров
- •1.3. Классификация эвм
- •1.3.1. Классификация эвм по назначению
- •1.3.2. Классификация эвм по функциональным возможностям и размерам
- •Сравнительные параметры различных классов эвм
- •Функциональная и структурная организация эвм
- •2.1. Связь между функциональной и структурной организацией эвм
- •2.2. Обобщенная структура эвм и пути её развития
- •Обрабатывающая подсистема
- •Подсистема памяти
- •Подсистема ввода-вывода
- •Подсистема управления и обслуживания
- •2.3. Структура и форматы команд эвм
- •Способ расширения кодов операции
- •2.4. Способы адресации информации в эвм
- •Классификация способов адресации по наличию адресной информации в команде Явная и неявная адресация
- •Классификация способов адресации по кратности обращения в память
- •Непосредственная адресация операнда
- •Прямая адресация операндов
- •Косвенная адресация операндов
- •Классификация способов формирования исполнительных адресов ячеек памяти
- •Относительная адресация ячейки оп Базирование способом суммирования
- •Относительная адресация с совмещением составляющих аи
- •Индексная адресация
- •Стековая адресация
- •2.5. Примеры форматов команд и способов адресации
- •2.5.1. Форматы команд и способы адресации в cisc-процессорах
- •Развитие системы команд процессоров архитектуры Intel
- •Общий формат команд
- •Способы адресации
- •2.5.2. Форматы команд и способы адресации в risc-процессорах
- •2.6. Типы данных
- •Данные со знаком
- •3. Функциональная и структурная организация центрального процессора эвм
- •3.1. Назначение и структура центрального процессора
- •3.2. Регистровые структуры центрального процессора
- •4. Регистры отладки и тестирования.
- •3.2.1. Основные функциональные регистры
- •Регистры общего назначения
- •Регистры сегментов и дескрипторы сегментов
- •Указатель команд
- •Регистр флагов
- •3.2.2. Регистры процессора обработки чисел с плавающей точкой
- •3.2.3. Системные регистры
- •3.2.4. Регистры отладки и тестирования
- •3.3. Назначение, классификация и организация цуу
- •3.3.1. Центральное устройство управления микропрограммного типа
- •3.3.2. Процедура выполнения команд
- •3.3.3. Принципы организации системы прерывания программ
- •Характеристики системы прерывания
- •Программно–управляемый приоритет прерывающих программ
- •Организация перехода к прерывающей программе
- •3.4. Назначение, классификация и организация алу
- •Классификация алу
- •Обобщенная структурная схема алу
- •Методы повышения быстродействия алу
- •4. Принципы организации подсистемы памяти эвм и вс
- •4.1. Иерархическая структура памяти эвм
- •4.2. Организация внутренней памяти процессора
- •4.3. Способы организации кэш-памяти
- •4.3.1. Общие сведения
- •Типовая структура кэш-памяти
- •4.3.2. Способы размещения данных в кэш-памяти
- •Прямое распределение
- •Полностью ассоциативное распределение
- •Частично ассоциативное распределение
- •Распределение секторов
- •4.3.3. Методы обновления строк основной памяти
- •Условия сохранения и обновления информации
- •Сквозная запись
- •Обратная запись
- •4.3.4. Методы замещения строк кэш-памяти
- •4.4. Принципы организации оперативной памяти
- •4.4.1. Общие положения
- •4.4.2. Методы управления памятью
- •Типы адресов
- •Распределение памяти фиксированными разделами
- •Распределение памяти разделами переменной величины
- •Перемещаемые разделы
- •4.4.3. Организация виртуальной памяти
- •Страничное распределение
- •Сегментное распределение
- •Странично-сегментное распределение
- •Свопинг
- •4.4.4. Методы повышения пропускной способности оперативной памяти
- •Выборка широким словом
- •Расслоение обращений
- •4.4.5. Методы защиты памяти
- •Защита памяти по граничным адресам
- •Защита памяти по маскам
- •Защита памяти по ключам
- •4.4.6. Методы ускорения процессов обмена между оп и взу
- •5. Принципы организации подсистемы ввода-вывода
- •5.1. Проблемы организации подсистем ввода-вывода
- •5.2. Способы организации передачи данных
- •Прямой доступ к памяти
- •5.3. Унификация средств обмена и интерфейсы эвм
- •5.3.1. Общая характеристика и классификация интерфейсов
- •5.3.2. Типы и характеристики стандартных шин
- •Характеристики стандартных шин
- •5.4. Современные и перспективные структуры подсистем ввода-вывода
- •6. Многопроцессорные и многомашинные вычислительные системы
- •6.1. Архитектуры вычислительных систем
- •6.2. Сильно связанные многопроцессорные системы
- •6.3. Слабосвязанные многопроцессорные системы
- •Список использованной литератуРы
- •Оглавление
Какую работу нужно написать?
Распределение секторов
По данному методу основная память разбивается на секторы, состоящие из фиксированного числа строк, кэш-память также разбивается на секторы, состоящие из такого же числа строк. Рассмотрим случай, когда длина строки равна 16 словам, а сектор состоит из 16 строк. Структура кэш-памяти с распределением секторов представлена на рис. 4.8. В адресе основной памяти старшие 10 бит показывают номер сектора, следующие 4 бит — номер строки внутри сектора, а младшие 4 бит — адрес слова в строке.
По данному методу распределение секторов в основной памяти и секторов в кэш-памяти осуществляется полностью ассоциативно. Другими словами, каждый сектор в основной памяти может соответствовать любому сектору в кэш-памяти. Распределение строк в секторе одинаково для основной памяти и кэш-памяти. К каждой строке, хранимой в кэш-памяти, добавляется один бит информации, называемый битом достоверности (действительности); он показывает, совпадает или нет содержимое этой строки с содержимым строки в основной памяти, которая в данный момент анализируется на соответствие строки кэш-памяти.
Если слова, запрашиваемого центральным процессором при доступе, не существует в кэш-памяти, то сначала центральный процессор проверяет, был ли сектор, содержащий это слово, ранее помещён в кэш-память. Если он отсутствует, то один из секторов кэш-памяти заменяется на этот сектор. Если все сектора кэш-памяти используются, то выбирается один какой-нибудь сектор, и при необходимости только некоторые строки из этого сектора возвращаются в основную память, а этот сектор можно использовать дальше. Когда осуществляется доступ к этому сектору в кэш-памяти и строка, содержащая нужное слово, пересылается из основной памяти, то бит достоверности устанавливается до пересылки строки. Все биты достоверности других строк этого сектора сбрасываются.
Если сектор, содержащий слово, доступ к которому запрашивается, уже находится в кэш-памяти, то в том случае, когда бит достоверности строки, содержащий это слово, равен 0, этот бит устанавливается и строка пересылается из основной памяти в данную область кэш-памяти. В том случае, когда бит достоверности уже равен 1, данное слово можно считать из кэш-памяти.
4.3.3. Методы обновления строк основной памяти
В табл. 4.1 приведены условия сохранения и обновления информации в ячейках кэш-памяти и основной памяти.
Таблица 4.1
Условия сохранения и обновления информации
Режим работы |
Наличие копии ячейки ОП в кэш-памяти |
Информация | |
В ячейке кэш-памяти |
В ячейке основной памяти | ||
Чтение |
Копия есть Копии нет |
Не изменяется Обновляется (создается копия) |
Не изменяется Не изменяется |
Сквозная запись |
Копия есть Копии нет |
Обновляется Не изменяется |
Обновляется Обновляется |
Обратная запись |
Копия есть Копии нет |
Обновляется Создается копия Обновляется |
Не изменяется Не изменяется |
Если процессор намерен получить информацию из некоторой ячейки основной памяти, а копия содержимого этой ячейки уже имеется в кэш-памяти (первая строка табл. 4.1.), то вместо оригинала считывается копия. Информация в кэш-памяти и основной памяти не изменяется. Если копии нет, то производится обращение к основной памяти. Полученная информация пересылается в процессор и попутно запоминается в кэш-памяти. Чтение информации в отсутствии копии отражено во второй строке таблицы. Информация в основной памяти не изменяется.
При записи существует несколько методов обновления старой информации. Эти методы называются стратегией обновления срок основной памяти. Если результат обновления строк кэш-памяти не возвращается в основную память, то содержимое основной памяти становится неадекватным вычислительному процессу. Чтобы избежать этого, предусмотрены методы обновления основной памяти, которые можно разделить на две большие группы: метод сквозной записи и метод обратной записи.