
- •1.Понятие числовых множеств. Действия над числовыми множествами.
- •2.Числовые промежутки. Окрестность точки.
- •3.Функция.График функции. Способы задания функции.
- •4.Основные характеристики функции: монотонность, четность, периодичность.
- •5.Обратная функция.
- •6.Сложная функция.
- •7.Основные элементарные функции; (степенная, тригонометрические, обратно-тригонометрические, показательная, логарифмическая) их свойства и графики.
- •Корень n-ой степени.
- •Корень n-ой степени, n - четное число.
- •Корень n-ой степени, n - нечетное число.
- •Степенная функция с нечетным положительным показателем.
- •Степенная функция с четным положительным показателем.
- •Степенная функция с нечетным отрицательным показателем.
- •Степенная функция с четным отрицательным показателем.
- •Степенная функция с рациональным или иррациональным показателем, значение которого больше нуля и меньше единицы.
- •Степенная функция с нецелым рациональным или иррациональным показателем, большим единицы.
- •Степенная функция с действительным показателем, который больше минус единицы и меньше нуля.
- •Степенная функция с нецелым действительным показателем, который меньше минус единицы.
- •Показательная функция.
- •Логарифмическая функция.
- •Тригонометрические функции, их свойства и графики.
- •Обратные тригонометрические функции, их свойства и графики.
- •8.Числовые последовательности.
- •Определение
- •Примеры
- •Операции над последовательностями
- •9.Предел числовой последовательности.
- •10.Предельный переход в неравенствах.
- •11.Предел функции в точке.
- •Левый и правый пределы функции
- •13.Предел функции при х→0
- •14.Бесконечно большая функция. Ответ - Бесконечно большая функция
- •15.Определение и основные свойства бесконечно малых функции.
- •16.Связь между функцией, пределом и бесконечно малой величиной.
- •17.Основные теоремы о пределах.
- •Предел монотонной функции
- •19.Первый замечательный предел.
- •Следствия из первого замечательного предела
- •20.Второй замечательный предел(б/д).
- •Следствия из второго замечательного предела
- •21.Сравнение бесконечно малых.
- •22. Основные теоремы о б.М.
- •23.Непрерывность функции в точке и на промежутке.
- •24.Точки разрыва функции и их классификация.
- •25.Основные теоремы о непрерывных функциях.
- •26.Свойства функций, непрерывных на отрезке (б/д). Ответ - Свойства функций непрерывных на отрезке:
- •27.Производная; Ее геометрический и физический смысл.
- •28.Связь между непрерывность. И дифференцируемостью функции.
- •31.Производная обратной функции.
- •32.Производные основных элементарных функций; таблица производных (вывод).
- •33.Дифференцирование неявных функций.
- •34. Дифференцирование параметрический заданных функций.
- •35.Логарифмическое дифференцирование.
- •38.Основные теоремы о дифференциалах.
- •39.Применение дифференциала к приближенным вычислениям.
- •40.Дифференциалы высших порядков. Инвариантность формы dy.
- •41.Теорема Ролля
- •54.Неопределенный интеграл: определение, геометрический смысл.
- •56. Основные свойства интеграла.
- •57. Таблица основных интегралов.
- •58.Интегрирование заменой переменной.
- •59.Интегрирование по частям
- •61.Основыне сведения о разложении многочленов
- •62.Теоремы о разложении рациональной дроби на сумму элементарных дробей
- •63.Основная тригонометрическая подстановка.
Обратные тригонометрические функции, их свойства и графики.
Обратные тригонометрические функции (арксинус, арккосинус, арктангенс и арккотангенс) являются основным элементарным функциями. Часто из-за приставки "арк" обратные тригонометрические функции называют аркфункциями. Сейчас мы рассмотрим их графики и перечислим свойства.
Функция арксинус y = arcsin(x).
Изобразим график функции арксинус:
Свойства функции арксинус y = arcsin(x).
Областью определения функции арксинус является интервал от минус единицы до единицы включительно:
.
Область значений функции y = arcsin(x):
.
Функция арксинус - нечетная, так как
.
Функция y = arcsin(x) возрастает на всей области определения, то есть, при
.
Функция вогнутая при
, выпуклая при
.
Точка перегиба (0; 0), она же ноль функции.
Асимптот нет.
К началу страницы
Функция арккосинус y = arccos(x).
График функции арккосинус имеет вид:
Свойства функции арккосинус y = arccos(x).
Область определения функции арккосинус:
.
Область значений функции y = arccos(x):
.
Функция не является ни четной ни нечетной, то есть, она общего вида.
Функция арккосинус убывает на всей области определения, то есть, при
.
Функция вогнутая при
, выпуклая при
.
Точка перегиба
.
Асимптот нет.
К началу страницы
Функция арктангенс y = arctg(x).
График функции арктангенс имеет вид:
Свойства функции арктангенс y = arctg(x).
Область определения функции y = arctg(x):
.
Область значений функции арктангенс:
.
Функция арктангенс - нечетная, так как
.
Функция возрастает на всей области определения, то есть, при
.
Функция арктангенс вогнутая при
, выпуклая при
.
Точка перегиба (0; 0), она же ноль функции.
Горизонтальными асимптотами являются прямые
при
и
при
. На чертеже они показаны зеленым цветом.
К началу страницы
Функция арккотангенс y = arcctg(x).
Изобразим график функции арккотангенс:
Свойства функции арккотангенс y = arcctg(x).
Областью определения функции арккотангенс является все множество действительных чисел:
.
Область значений функции y = arcctg(x):
.
Функция арккотангенс не является ни четной ни нечетной, то есть, она общего вида.
Функция убывает на всей области определения, то есть, при
.
Функция вогнутая при
, выпуклая при
.
Точка перегиба
.
Горизонтальными асимптотами являются прямые
при
(на чертеже показана зеленым цветом) и y = 0 при
.
8.Числовые последовательности.
Ответ - Числовая последовательность — это последовательностьэлементов числового пространства.
Числовые последовательности являются одним из основных объектов рассмотрения в математическом анализе.
Определение
Пусть —
это либо множество вещественных чисел
,
либо множество комплексных чисел
.
Тогда последовательность
элементов
множества
называется числовой
последовательностью.
Примеры
Функция
является бесконечной последовательностьюцелых чисел. Начальные отрезки этой последовательности имеют вид
.
Функция
является бесконечной последовательностьюрациональных чисел. Начальные отрезки этой последовательности имеют вид
.
Функция, сопоставляющая каждому натуральному числу
одно из слов «январь», «февраль», «март», «апрель», «май», «июнь», «июль», «август», «сентябрь», «октябрь», «ноябрь», «декабрь» (в порядке их следования здесь) представляет собой последовательность вида
. В частности, пятым членом
этой последовательности является слово «май».