Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Основы неорганической химии - учебное пособие.doc
Скачиваний:
614
Добавлен:
30.04.2015
Размер:
3.99 Mб
Скачать

4.8. Взаимодействия между молекулами

При сближении молекул появляется притяжение, что обусловли­вает возникновение конденсированного состояния вещества. К основ­ным видам взаимодействия молекул следует отнести вандерваальсовы силы, водородные связи и донорно-акцепторное взаимодействие.

4.8.1. Вандерваальсовы силы. В 1873 г. голландский ученый И. Ван-дер-Ваальс предположил, что существуют силы, обусловливающие притяжение между молеку­лами. Эти силы позднее получили название вандерваальсовых сил. Они включают в себя три составляющие: диполь-дипольное, индукционое и дисперсионное взаимодействия.

Диполь-дипольное взаимо­действие. При сближении по­лярных молекул они ориенти­руются таким образом, чтобы положительная сторона одного диполя была ориентирована к отрицательной стороне другого диполя (рис.21). Возникающее между диполя­ми взаимодействие называется диполь-дипольным или ориентационным. Энергия диполь-дипольного взаимодействия пропорциональна электрическому моменту диполя в четвертой сте­пени и обратно пропорциональна расстоянию между центрами диполей в шестой степени и абсолют­ной температуре в первой степени.

Индукционное

Рис.21. Вандерваальсовы взаимодей-ствия молекул: а – диполь-дипольное (ориентационное); б – индукционное; в - дисперсионное

взаимодействие. Диполи

могут воздействовать на

неполярные молекулы,

превращая их в индуцированные (наве­денные) диполи (рис.21). Между постоянными и наведенными ди­полями возникает притяжение, энергия которого пропорциональна электрическому моменту диполя во второй степени и обратно про­порциональна расстоянию между центрами молекул в шестой степе­ни. Энергия индукционного взаимодействия возрастает с увеличени­ем поляризуемости молекул, т.е. способности молекулы к об­разованию диполя под воздействием электрического поля. Величину поляризуемости выражают в единицах объема. Поляризуемость в од­нотипных молекулах растет с увеличением размера молекул (табл. 14). Энергия индукционного взаимодействия значительно меньше энер­гии диполь-дипольного взаимодействия (табл. 14).

14. Вклад отдельных составляющих в энергию межмолекулярного взаимодействия

Ве-щест-во

Элект-ричес-кий момент диполя, D

Поля-ризуе-мость, м3∙1030

Энергия взаимодействия, кДж/моль

Темпе-ратура кипе-ния К

ориен-таци-онная

индук-цион-ная

диспер-сионная

сум-мар-ная

H2

Ar

Xe

HCl

HBr

HI

NH3

0

0

0

1,03

0,78

0,38

1,52

0,8

1,64

4,16

2,64

3,62

5,42

2,23

0

0

0

3,3

1,1

0,6

13,3

0

0

0

1,0

0,70

0,3

1,5

0,17

8,5

18,4

16,8

28,5

60,6

14,7

0,17

8,5

18,4

21,1

30,3

61,5

29,5

20,2

76

167

188

206

238

239,6

Дисперсионное притяжение. В любой молекуле или атоме бла­городного газа возникают флуктуации электрической плотности, в результате чего появляются мгновенные диполи, которые в свою очередь индуцируют мгновенные диполи у соседних молекул (рис.21). Движение мгновенных диполей становится согласованным, их появление и распад происходит синхронно. В результате взаимо­действия мгновенных диполей энергия системы понижается. Энергия дисперсионного взаимодействия пропорциональна поляризуемости молекул и обратно пропорциональна расстоянию между центрами частиц. Для неполярных молекул дисперсионное взаимо­действие является единственной составляющей вандерваальсовых сил (табл. 14).

Энергия вандерваальсова взаимодействия. Энергия всех видов вандерваальсова взаимодействия обратно пропорциональна расстоя­нию между центрами молекул в шестой степени.

При сильном сближении молекул проявляются силы отталкивания между ними, которые обратно пропорции-ональны расстоянию: между молекулами-в двенадцатой ступени. Поэтому зависимость результирующей энергии вандерваальсова взаимодействия Ев от расстояния между молекулами, Iв, выражается уравнением

где: a и b — постоянные.

Минимальная энергия системы обеспечивается при расстояниях между центрами молекул 0,4÷0,5 нм, т.е. существенно больше длины химической связи.

Как видно из табл. 14, с увеличением размера молекул в ряду Аr-Хе и НС1-HI растет их поляризуемость и энергия дисперсион­ного притяжения. Ориентационное взаимодей-ствие вносит значи­тельный вклад в вандерваальсовы силы лишь в случае молекул с большим электрическим моментом диполя. С увеличением сум­марной энергии межмолекуляр-ного взаимодействия возрастает температура кипения жидкостей, а также теплота их испарения.

Суммарная энергия вандерваальсового взаимодействия молекул на 1-2 порядка ниже энергии химических связей.

Итак, между молекулами возникают относительно слабые вандерваальсовы взаимодействия, включающие дисперсион-ные силы, а для полярных молекул и диполь-дипольное притяжение и индукци­онные взаимодействия.

4.8.2. Донорно-акцепторное взаимодействие молекул. Комплексные соединения. Если одна из двух молекул имеет атом со свободными орбиталями, а другая - атом с парой неподеленных электронов, то между ними происходит донорно-акцепторное взаимодействие, которое приводит к образованию ковалентной связи, например:

NH3 + BF3 = NH3BF3

У атома азота в молекуле аммиака имеется неподеленная пара электронов, а у атома бора в молекуле трифторида бора - вакантная орбиталь.

При взаимодействии по донорно-акцепторному механизму атом азота отдает на связь пару электронов, а атом бора - вакантную орби­таль, в результате чего возникает ковалентная связь

H F H F

| | | |

H – N + B – F → H – N – B – F

| | | |

H F H F

В полученном соединении суммарные валентности бора и азота равны четырем.

Комплексы. Аналогичным образом образуется соединение КРF6 при взаимодействии KF и PF5, которое можно записать в виде К[РF6].

При взаимодействии сульфата меди и аммиака образуется сложное соединение

CuSO4+4NH3=CuSO4 · 4NН3

которое выражается формулой [Сu(NН3)4]SO4. Сложные соединения, у которых имеются ковалентные связи, образованные по донорно-акцепторному механизму, получили название комплексных или коор­динационных соединений. (см. главу 9).