
- •Таирова а.Р.
- •Неорганической химии
- •Учебное пособие
- •Г л а в а 2. Строение атома…………………..…………….…55
- •Г л а в а 9. Комплексные соединения……...………………204
- •Глава 1. Атомно – молекулярное учение
- •1.1.Основные законы и понятия химии
- •1.2. Химическая символика
- •1. Латинские корни некоторых элементов
- •2. Групповые названия элементов
- •1.3. Классы неорганических веществ
- •3. Классы бинарных соединений от типа неметалла
- •4. Названия наиболее часто употребляемых кислот и кислотных остатков
- •Получение кислот
- •1.4. Номенклатура неорганических соединений (по правилам июпак)
- •Глава 2. Строение атома
- •2.1. Первые модели атома
- •2.2. Атомные спектры
- •2.3. Кванты и модель Бора
- •2.4. Двойственная природа электрона
- •2.5. Квантово – механическая модель атома
- •5. Энергетические подуровни
- •6. Значения квантовых чисел и максимальное число электронов на квантовых уровнях и подуровнях
- •Глава 3. Периодическая система д.И. Менделеева
- •7. Изотопы водорода
- •3.2. Периодическая система элементов д.И. Менделеева и электронная структура атомов
- •8. Электронные конфигурации элементов первых двух периодов
- •9. Электронные конфигурации элементов
- •3.3. Периодические свойства элементов
- •10. Электроотрицательность элементов по Полингу
- •11. Степени окисления мышьяка, селена, брома
- •12. Сокращенные и полные уравнения ядерных реакций
- •Глава 4. Химическая связь и строение молекул
- •4.1. Определение химической связи
- •4.2. Ионная связь
- •4.3. Ковалентная связь
- •4.4. Метод валентных связей (мвс, вс)
- •4.5. Метод молекулярных орбиталей (ммо, мо)
- •4.5.1. Основные положения ммо, мо.
- •13. Гибридизация орбиталей и пространственная конфигурация молекул
- •4.6. Металлическая связь
- •4.7. Водородная связь
- •4.8. Взаимодействия между молекулами
- •14. Вклад отдельных составляющих в энергию межмолекулярного взаимодействия
- •Глава 5 . Энергетика химических процессов
- •5.1. Общие понятия
- •5.2. Внутренняя энергия. Первый закон термодинамики
- •5.3. Энтальпия системы. Тепловые эффекты химических реакций
- •5.4. Термохимические расчеты
- •15. Стандартные теплоты (энтальпии) образования некоторых веществ
- •5.5. Химическое сродство. Энтропия химических реакций. Энергия Гиббса
- •5.6. Второй и третий законы термодинамики
- •16. Стандартная энергия Гиббса образования некоторых веществ
- •17. Стандартные абсолютные энтропии некоторых веществ
- •Глава 6. Химическая кинетика и равновесие
- •6.1. Понятие о скорости химических реакций
- •6.2. Зависимость скорости реакции от концентрации реагентов
- •6.3. Влияние температуры на скорость реакции
- •6.4. Энергия активации
- •6.5. Понятие о катализе и катализаторах
- •6.6. Химическое равновесие. Принцип Ле Шателье
- •Глава 7. Растворы
- •7.1. Способы выражения концентрации растворов
- •7.2. Коллигативные свойства растворов
- •7.3. Растворы электролитов
- •Например, для раствора кс1
- •18. Коэффициенты активности некоторых электролитов в растворах при 298 к
- •7.4. Гидролиз солей
- •19. Константы и степени диссоциации некоторых слабых электролитов
- •Глава 8. Окислительно-восстановительные процессы
- •20. Валентности и степени окисления атомов в некоторых соединениях
- •8.2. Окислительно-восстановительные реакции
- •21. Важнейшие восстановители и окислители
- •8.3. Составление уравнений окислительно-восстановительных реакций
- •Глава 9. Комплексные соединения
- •9.1. Определение комплексных соединений
- •9.2. Комплексообразователи
- •9.3. Лиганды
- •9.4. Номенклатура комплексных соединений
- •9.5. Диссоциация комплексных соединений
- •9.6. Константы устойчивости комплексов
- •9.7.Роль комплексных соединений
- •9.8. Комплексонометрия. Жесткость воды
- •Список используемой литературы
- •Основы неорганической химии Учебное пособие
10. Электроотрицательность элементов по Полингу
Н 2,1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Li 1,0 |
Be 1,5 |
|
|
|
|
|
|
|
|
|
|
B 2,0 |
C 2,5 |
N 3,0 |
O 3,5 |
F 4,0 |
Na 0,9 |
Mg 1,2 |
|
|
|
|
|
|
|
|
|
|
Al 1,5 |
Si 1,8 |
P 2,1 |
S 2,5 |
Cl 3,0 |
К 0,8 |
Ca 1,0 |
Sc 1,3 |
Ti 1,5 |
V 1,6 |
Cr 1,6 |
Mn 1,5 |
Fe 1,8 |
Co 1,9 |
Ni 1,9 |
Cu 1,9 |
Zn 1,6 |
Ga 1,6 |
Ge 1,8 |
As 2,0 |
Se 2,4 |
Br 2,8 |
Rb 0,8 |
Sr 1,0 |
Y 1,2 |
Zr 1,4 |
Nb 1,6 |
Mo 1,8 |
Tc 1,9 |
Ru 2,2 |
Rh 2,2 |
Pd 2,2 |
Ag 1,9 |
Cd 1,7 |
In 1,7 |
Sn 1,8 |
Sb 1,9 |
Te 2,1 |
I 2,5 |
Cs 0,7 |
Ba 0,9 |
La-Lu 1,0-1,2 |
Hf 1,3 |
Ta 1,5 |
W 1,7 |
Re 1,9 |
Os 2,2 |
Ir 2,2 |
Pt 2,2 |
Au 2,4 |
Hd 1,9 |
Tl 1,8 |
Pb 1,9 |
Bi 1,9 |
Po 2,0 |
At 2,2 |
Электроотрицательность элементов (табл. 10) возрастает по периоду и несколько убывает в группах с возрастанием номера периода у элементов I, II, V, VI и VII главных подгрупп, III, IV и V — побочных подгрупп, имеет сложную зависимость у элементов III главной подгруппы (минимум ЭО у А1), возрастает с увеличением номера периода у элементов IV — VIII побочных подгрупп. Наименьшие значения ЭО имеют s-элементы I подгруппы, наибольшие значения — р-элементы VII и VI групп.
Таким образом наибольшие значения ОЭО имеют типичные неметаллы, наименьшие – активные металлы.
Атомные радиусы. Атомы не имеют строго определенных границ из-за корпускулярно-волнового характера электронов. Поэтому абсолютное значе ние радиуса атома определить невозможно. Можно условно принять за радиус атома теоретически рассчитанное значение расстояния от ядра до наиболее удаленного от него максимума электронной плотности - орбитальный радиус атома, или половину расстояния между центрами двух смежных атомов в кристаллах - эффективные радиусы атомов. Наблюдается периодичность изменения атомных радиусов (рис. 4), особенно у s- и p-элементов. У d- и f-элементов кривая изменения радиусов атомов по периоду имеет более плавный характер. В одной и той же группе с увеличением номера периода атомные радиусы, как правило, возрастают в связи с увеличением числа электронных оболочек. Однако увеличение заряда ядра при этом оказывает противоположный эффект, поэтому увеличение атомных радиусов с увеличением номера периода относительно невелико, а в некоторых случаях, например, у р-элементов III группы, значение орбитального радиуса у А1 больше, чем у Ga.
Пример 1. Какую высшую и низшую степени окисления проявляют мышьяк, селен и бром? Составьте формулы соединений данных элементов, отвечающих этим степеням окисления.
Рис.4. Зависимость орбитальных радиусов атомов от порядкового номера элементов
Решение. Высшую степень окисления элемента определяет, как правило, номер группы периодической системы Д.И. Менделеева, в которой он находится. Низшая степень окисления определяется тем условным зарядом, который приобретает атом при присоединении того числа электронов, которое необходимо для образования устойчивой восьмиэлектронной оболочки (ns2, пр6).
Данные элементы находятся соответственно в VA-, VIA-, VIIA-группах и имеют структуру внешнего энергетического уровня s2p3, s2p4 и s2p5. Ответ на вопрос см. в табл. 11.