
- •3.1. Производные и дифференциалы
- •3.1.1. Производная и ее геометрический смысл
- •Определение 3.1.1
- •Определение 3.1.2
- •Геометрический смысл производной
- •Доказательство
- •3.1.2. Дифференцируемая функция
- •Определение 3.1.3
- •Необходимое и достаточное условие дифференцируемости функции
- •Доказательство
- •Определение 3.1.4
- •3.1.3. Непрерывность и дифференцируемость функции
- •Теорема 3.1.1
- •Доказательство
- •Задача 3.1.1
- •Задача 3.1.1
- •Определение 3.1.5
- •3.1.4. Правила дифференцирования
- •Производная функции, тождественно равной постоянной
- •Производная суммы и разности функций
- •Доказательство
- •Производная произведения функций
- •Доказательство
- •Следствие
- •Доказательство
- •Производная частного
- •Доказательство
- •Теорема о производной обратной функции
- •Доказательство
- •Производная сложной функции
- •Доказательство
- •3.1.5. Производные основных элементарных функций
- •Производная степенной функции
- •Доказательство
- •Производная экспоненциальной и показательной функций
- •Доказательство
- •Производная логарифмической функции
- •Доказательство
- •Производные тригонометрических функций
- •Доказательство
- •Производные обратных тригонометрических функций
- •Доказательство
- •Производные гиперболических функций
- •Доказательство
- •Пример 3.1.2
- •Решение
- •Задача 3.1.3
- •Решение
- •3.1.6. Уравнение касательной к кривой. Угол между кривыми.
- •Уравнение касательной
- •Доказательство
- •Задача 3.1.4
- •Решение
- •Задача 3.1.5
- •Решение
- •3.1.7. Дифференциал. Формула дифференциала
- •Определение 3.1.6
- •Правила дифференцирования
- •Задача 3.1.6
- •Решение
- •Геометрический смысл дифференциала
- •Доказательство
- •Инвариантность формулы дифференциала
- •Доказательство
- •Следствие
- •3.1.8. Производные функций, заданных параметрически. Дифференцирование неявных функций
- •Производная функции, заданной параметрически
- •Доказательство
- •Задача 3.1.7
- •Решение
- •Производная функции, заданной неявно
- •Задача 3.1.8
- •Решение
- •Задача 3.1.9
- •Решение
- •3.1.10. Приближенные вычисления с помощью дифференциала.
- •Задача 3.1.10
- •Решение
- •3.1.10. Производные высших порядков
- •Определение 3.1.7
- •Задача 3.1.11
- •Решение
- •Задача 3.1.12
- •Решение
- •Задача 3.1.13
- •Решение
- •Задача 3.1.14
- •Решение
- •Механический смысл первой и второй производной
- •Доказательство
- •Следствие
- •3.1.11. Дифференциалы высших порядков.
- •Определение 3.1.8
- •Формула второго дифференциала
- •Доказательство
- •Задача 3.1.15
- •Решение
- •Задача 3.1.16
- •Решение
- •3.1.12. Теоремы Ферма, Ролля, Лагранжа. Правила Лопиталя
- •Теорема Ферма
- •Доказательство
- •Следствие
- •Теорема Ролля
- •Доказательство
- •Теорема Лагранжа.
- •Доказательство
- •Правило Лопиталя
- •Доказательство
- •Задача 3.1.17
- •Решение
- •Задача 3.1.18
- •Решение
- •Задача 3.1.19
- •Решение
- •3.1.13. Формула Тейлора и ее применение
- •Многочлен Тейлора
- •Определение 3.1.9
- •Теорема 3.1.2
- •Доказательство
- •Формулы Тейлора и Маклорена
- •Определение 3.1.9
- •Теорема 3.1.3
- •Доказательство
- •Определение 3.1.10
- •Формула Маклорена для основных элементарных функций
- •Задача 3.1.20
- •Решение
- •Задача 3.1.21
- •Решение
- •Применение формул Тейлора и Маклорена
- •Задача 3.1.22
- •Решение
- •Задача 3.1.23
- •Решение
- •Задача 3.1.24
- •Решение
- •3.2. Исследование функций с помощью производных
- •3.2.1. Исследование функций с помощью первой производной
- •Определение 3.2.1
- •Определение 3.2.2
- •Необходимое условие экстремума
- •Доказательство
- •Следствие
- •Определение 3.2.3
- •Достаточное условие экстремума
- •Доказательство
- •Задача 3.2.1
- •Решение
- •Задача 3.2.2
- •Решение
- •Чтобы исследовать функцию на экстремум необходимо:
- •Задача 3.2.3
- •Решение
- •3.2.2. Исследование функций с помощью второй производной. Точки перегиба
- •Определение 3.2.4
- •Определение 3.2.5
- •Теорема 3.2.1
- •Доказательство
- •Теорема 3.2.2
- •Доказательство
- •Определение 3.2.6
- •Теорема 3.2.3
- •Чтобы найти точки перегиба графика функции нужно:
- •Задача 3.2.4
- •Решение
- •Задача 3.2.5
- •Решение
- •3.2.3. Асимптоты графика функции.
- •Определение 3.2.7
- •Задача 3.2.6
- •Решение
- •Определение 3.2.8
- •Теорема 3.2.3
- •Доказательство
- •Задача 3.2.7
- •Решение
- •3.2.4. Наибольшее и наименьшее значения непрерывной на замкнутом промежутке функции
- •Задача 3.2.8
- •Решение
- •3.2.5. Элементы дифференциальной геометрии плоских кривых
- •Пример 3.2.8
- •Решение
- •Пример 3.2.9
- •Решение
- •Касательная к пространственной кривой и нормальная плоскость
- •Пример 3.2.10
- •Решение
- •Дифференциальные характеристики плоских кривых
- •Определение 3.2.9
- •Определение 3.2.10
- •Определение 3.2.11
- •Пример 3.2.11
- •Решение
- •Пример 3.2.12
- •Решение

Заменяя в последней формуле y = x −1 , получим формулу Тейлора для функции f (x)= ln x в точке x0 =1
ln x = (x −1)− (x −21)2 + (x −31)3 − (x −41)4 +... +(−1)n−1 (x −n1)n +θ(xn ).
Применение формул Тейлора и Маклорена
Задача 3.1.22
Вычислить предел, используя формулу Маклорена
lim |
e−x2 |
−sin(x2 )−cos 2x |
. |
|
x3 sin x |
||
x→0 |
|
|
Решение
Представим следующие функции формулой Маклорена
|
−x 2 |
|
|
x2 |
x4 |
|
x6 |
6 |
|
||||||||||
e |
|
=1 |
− |
|
+ |
|
|
|
|
|
− |
|
|
|
+ θ(x |
|
), |
||
|
1! |
|
2! |
3! |
|
||||||||||||||
|
sin x = x − |
x3 |
|
+ |
x5 |
+ θ(x5 ), |
|
||||||||||||
|
|
|
|
|
|
||||||||||||||
|
|
|
3! |
5! |
|
|
|
|
|||||||||||
|
|
sin x2 = x2 − |
x6 |
|
+ θ(x6 ), |
|
|
||||||||||||
|
|
|
|
|
|||||||||||||||
|
|
|
|
|
|
|
|
3! |
|
|
|
|
|
|
|
||||
cos 2x =1 − |
4x2 +16x4 |
− 64x6 + θ(x6 ), |
|||||||||||||||||
|
|
|
2! |
|
|
|
4! |
|
|
6! |
|
|
под знаком предела, ограничиваясь при этом членами со степенями не выше, чем x4 . Тогда это выражение можно преобразовать так, чтобы предел легко вычислялся.
|
e−x2 |
−sin(x2 )−cos 2x |
= lim |
1 − x2 + |
x4 |
|
− x2 −1 + 2x |
2 − |
2 |
x4 |
+ θ(x4 ) |
= |
|||||||||||||||||||||||||||||||
lim |
2 |
|
|
3 |
|||||||||||||||||||||||||||||||||||||||
|
x |
3 |
sin x |
|
|
|
|
|
|
|
|
|
x |
3 |
(x − |
|
x |
3 |
|
+ θ(x |
4 |
)) |
|
|
|
||||||||||||||||||
x→0 |
|
|
|
|
|
|
x→0 |
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
|
|
|
|
|
|
||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||
|
|
|
= lim |
x4 |
− |
2 x 4 |
+ θ(x4 ) |
= lim |
− |
x 4 |
+ θ(x4 ) |
= − |
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||
|
|
|
2 |
|
|
1 |
|
|
|
|
|
|
|
|
|||||||||||||||||||||||||||||
|
|
|
|
|
3 |
|
|
|
|
|
|
|
|
|
6 |
|
|
|
|
|
|
|
|
|
. |
|
|
|
|
|
|||||||||||||
|
|
|
|
x4 + θ(x4 ) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||
|
|
|
|
|
x→0 |
x→0 |
|
x4 + θ(x4 ) |
|
|
6 |
|
|
|
|
|
|
|
|
||||||||||||||||||||||||
Задача 3.1.23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Вычислить предел, используя формулу Маклорена |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||
|
|
|
|
|
|
|
|
lim |
cos (sin x)−1 + 0,5x2 + 2x |
4 |
|
. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
x4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
|
|
|
|
|
|
|
|
x→0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
Решение |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
По формуле Маклорена |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||
sin x |
= x − |
x3 |
+ θ(x3 )= x − |
x3 |
+ θ(x3 ), |
cos x =1− |
x2 |
+ |
x4 |
+θ(x4 ). |
|
||||||||||||||||||||||||||||||||
|
6 |
2! |
|
|
|||||||||||||||||||||||||||||||||||||||
|
|
|
|
3! |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4! |
|
|
|
|
Подставляя выражение для функции sin x в формулу Маклорена для cos x , получим
cos(sin x)=1 − (x − x63 )2 + (x − x63 )4 + θ(x4 ), или 2! 4!
35