Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Shpory_po_geometrii_4_semestr.doc
Скачиваний:
142
Добавлен:
14.04.2015
Размер:
1.33 Mб
Скачать

§13. Задачи на построение в аксонометрической проекции.

След-е зад мы будем использовать при построении сечений многогранников.

Зад 1. Прямая (a, a3) лежит в плоск. заданной тремя точками (A, A3), (B, B3), (C, C3), не лежащими на одной прямой. По заданной прямой a построить a3.

Реш.Строим прямые AB, A3B3, AC, A3C3, BC, B3C3. Мы договорились, что направление проецирования не параллельно рассматриваемым прямым и плоскостям. Поэтому точки A, B, C не лежат на одной прямой

и прямые AB, AC, BC не совпадают. Прямая a пересекает две из этих прямых в точках M и N. По этим точкам мы можем построить вторичные проекции M3 и N3 (для этого необходимо провести прямые параллельные OE3). Тогда a3=M3N3.

И наоборот, если задана прямая a3, мы можем найти M3 и N3, по ним найти M и N. Тогда a=MN. Но здесь возможна ситуация, когда A3, B3, C3 лежат на одной прямой. Тогда задача не имеет решения.

Зад 2.Точка (X, X3) лежит в плоскости заданной тремя точками (A, A3), (B, B3), (C, C3), не лежащими на одной прям. По заданной точке X3 построить X.

Реш.Точка (X, X3) лежит в одной плоскости с точками (A, A3), (B, B3), (C, C3). Поэтому прямые (XC, X3C3) и (AB, A3B3) лежат в одной плоскости. Пусть они пересекаются в точке (M, M3) (если эти прямые не

пересекаются, то пересекаются прямые (XA, X3A3) и (BC, B3C3), и мы рассмотрим их). Строим:1. M3=X3C3A3B3;

2. m||OE3, M3m; 3. ABm=M;

4. l||OE3, X3l; 5. lCD=X.

Аналогично по точке X можем найти X3.

Задача 4. Плоскость задана тремя точками (A, A3), (B, B3), (C, C3), не лежащими на одной прямой. Построить её след.

Решение. Прямые (AB, A3B3) и (AC, A3C3) лежат на плоскости  их следы лежат на следе плоскости. Строим:

1. X=ABA3B3, Y=ACA3C3;

2. p=XY – след.

Если какая-либо из прямых не имеет следа, то вместо неё рассмотрим прямую (BC, B3C3

§14. Полные и неполные изображения.

Пусть  – плоскость изображений. Говорим, что точка M; ¯ задана, если задана её аксонометрическая проекция и одна из вторичных проекций, например, M3. Прямая a считается заданной, если заданы 2её точки или её аксонометрическая и вторичная проекции. Плоскость считается заданной, если заданы элементы, которые её однозначно определяют (например, три точки, которые не принадлежат одной прямой, прямая и точка или две прямые).

Пусть на плоск. дано изображение F некоторой фигуры F; ¯. Это изобр-ие наз. полным, если к нему можно присоединить изобр-ие R аффинного репера так, что все прямые, точки и плоск, которые определяют фигуру F, будут заданы.

Пр1. Данное изображение параллелепипеда является полным. Если к нему присоединить изображение R ={A, B, D, A1} аффинного репера, то все вершины будут заданы, т.е. у каждой вершины можно указать аксонометрическую и вторичную проекции. Напр, у вершины A; ¯ – (A, A), у B1 – (B1, B).

Оказывается свойство изображения быть полным или неполным не зависит от выбора присоединённого репера (без д-ва). Если в последнем примере выбрать за изображение репераR ={A, B, D, D1}, то вторичная проекция точки B1 будет отсутствовать, но её можно построить. Для этого нам нужно провести через B1 прямую параллельную AD1 до пересечения с прямой BC

Пр2 изображение шестигранника не явл. полным. Если к нему присоединить изображение R ={A, B, C, S} аффин.репера, то вершины A; ¯, B; ¯, C; ¯, S; ¯ будут заданы, а D; ¯ – нет. У неё есть аксонометрическая проекция D, а в качестве вторичной проекции можем взять любую точку D3, принадлежащую прям.l||AS, проходящей через D, даже если эта точка будет находиться за пределами треуг. ABC. На след-ем чертеже мы выбрали точ. K, а точ. L потом однозначно достраивается.

Количество точек, которые необходимо добавить к чертежу, для того, чтобы изображение стало полным, называетсякоэффициентом неполноты изображения. В последнем примере он равен 1.

Пр3. Данное изображение тетраэдра и прямой имеет коэффициент неполноты равный 2. Для того чтобы оно стало полным, необходимо добавить точки пересечения прямой с гранями пирамиды (и соответственно, часть линии сделать пунктирной). Мы добавляем точки M и N, а точки Mo и No однозначно достраиваются.

Задачи на построение на неполном изображении не имеют единственного решения. Недостающие элементы можно добавлять произвольно.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]