
- •Министерство образования и науки Российской Федерации
- •Введение
- •1. Психология и математика
- •1.1. Методологические проблемы использования математики в психологии
- •1.2. Планирование психологических экспериментов и обработка получаемых данных
- •1.3. Использование методов математического моделирования в психологии
- •1.4. Информация и психические процессы
- •1.5. Математические методы в проектировании деятельности человека
- •1.6. Системный анализ в психологии
- •1.7. Применение эвм в психологии
- •2. Понятие выборки
- •2.1. Полное исследование
- •2.2. Выборочное исследование
- •2.3. Зависимые и независимые выборки
- •2.4. Требования к выборке
- •2.5. Репрезентативность выборки
- •2.6. Формирование и объем репрезентативной выборки
- •3. Измерения и шкалы
- •3.1. Измерения
- •3.2. Измерительные шкалы
- •Правила ранжирования
- •3.3. Как определить, в какой шкале измерено явление
- •Задачи и упражнения
- •4. Формы учета результатов измерений
- •4.1. Таблицы исходных данных
- •4.2. Таблицы и графики распределения частот
- •Решения тестовой задачи
- •4.3. Применение таблиц и графиков распределения частот
- •4.4. Таблицы сопряженности номинативных признаков
- •Зависимость распределения оставленных и полученных открыток от их содержания
- •Задачи и упражнения
- •В трех группах
- •5. Первичные описательные статистики
- •5.1. Меры центральной тенденции
- •5.2. Выбор меры центральной тенденции
- •5.3. Квантили распределения
- •5.4. Меры изменчивости
- •Задачи и упражнения
- •6. Нормальный закон распределения и его применение
- •6.1. Понятие о нормальном распределении
- •6.2. Нормальное распределение как стандарт
- •6.3. Разработка тестовых шкал
- •Тестовые нормы – таблица пересчета «сырых» баллов в стены
- •Пример нелинейной нормализации: пересчет «сырых» оценок в шкалу стенайнов
- •6.4. Проверка нормальности распределения
- •Задачи и упражнения
- •7. Общие принципы проверки статистических гипотез
- •7.1. Проверка статистических гипотез
- •7.2. Нулевая и альтернативная гипотезы
- •7.3. Понятие уровня статистической значимости
- •7.4. Статистический критерий и число степеней свободы
- •7.5. Этапы принятия статистического решения
- •7.6. Классификация психологических задач, решаемых с помощью статистических методов
- •8. Статистические критерии различий
- •8.1. Параметрические и непараметрические критерии
- •8.2. Рекомендации к выбору критерия различий
- •9. Корреляционный анализ
- •9.1. Понятие корреляционной связи
- •9.2. Коэффициент корреляции Пирсона
- •9.3. Коэффициент корреляции рангов Спирмена
- •Случай одинаковых (равных) рангов
- •Расчет уровней значимости коэффициентов корреляции
- •Задачи и упражнения
- •Показатели количества ошибок в тренировочной сессии и показатели уровня вербального и невербального интеллекта
- •10. Параметрические критерии различия
- •Задачи и упражнения
- •Результативность испытуемых контрольной и опытной групп (среднее число пораженных мишеней из 25 в 10 сериях испытаний)
- •11. Выявление различий в уровне исследуемого признака
- •11.1. Обоснование задачи сопоставления и сравнения
- •Упорядоченные по убыванию вербального интеллекта ряды индивидуальных значений в двух студенческих выборках
- •Подсчет ранговых сумм по выборкам студентов физического и психологического факультетов
- •Подсчет ранговых сумм по группам испытуемых, работавших над четырьмя неразрешимыми анаграммами
- •Показатели по шкале Авторитетности в группах с разным
- •Задачи и упражнения
- •Показатели сокращения психологической дистанции (в %) после социодраматической замены ролей в группе
- •Показатели интенсивности внутреннего сопротивления при обращении в службу знакомств (в мм)
- •Индивидуальное значение по фактору n 16pf в 4 возрастных группах руководителей (по данным е. В. Сидоренко, 1987)
- •12. Оценка достоверности сдвига в значениях исследуемого признака
- •12.1. Обоснование задачи исследований изменений
- •Классификация сдвигов и критериев оценки их статистической достоверности
- •Оценки степени согласия с утверждениями о допустимости телесных
- •Оценки степени согласия с утверждениями о допустимости телесных
- •Расчет количества положительных, отрицательных и нулевых сдвигов в двух группах суггерендов
- •Расчет критерия т при сопоставлении замеров физического волевого усилия
- •12.4. Критерий χr2 Фридмана
- •Показатели времени решения анаграмм (сек)
- •Задачи и упражнения
- •Оценки степени согласия с утверждениями о допустимости телесных
- •Оценки реального и идеального уровней развития коммуникативных
- •13. Выявление различий в распределении признака
- •13.1. Обоснование задачи сравнения распределений признака
- •13.2.1. Сравнение эмпирического распределения с теоретическим
- •13.2.2. Сравнение двух экспериментальных распределений
- •13.2.3. Использование критерия хи-квадрат для сравнения показателей внутри одной выборки
- •13.3.1. Сопоставление эмпирического распределения с теоретическим
- •Расчет критерия при сопоставлении распределения выборов
- •13.3.2. Сопоставление двух эмпирических распределений
- •Задачи и упражнения
- •Частота встречаемости запретов на психологические поглаживания
- •14. Многофункциональные статистические критерии
- •14.1. Понятие многофункциональных критериев
- •14.2 Критерий φ* – угловое преобразование Фишера
- •Четырехклеточная таблица для расчета критерия при сопоставлении двух групп испытуемых, по процентной доле решивших задачу
- •Показатели расстояния (в см), выбираемого агрессивными и неагрессивными юношами в разговоре с сокурсником (по данным г. А. Тлегеновой, 1990)
- •Показатели интенсивности ощущения собственной недостаточности
- •Четырехклеточная таблица для расчета критерия φ* при сопоставлении групп с большей и меньшей энергией вытеснения по соотношению показателей недостаточности
- •Четырехклеточная таблица для расчета критерия φ* при сопоставлении групп с большей и меньшей энергией вытеснения по уровню показателя недостаточности
- •Четырехклеточная таблица для сопоставления групп с разной энергией вытеснения по частоте нулевых значений показателя недостаточности
- •Распределение прогнозов общепрактикующих врачей о том, какова будет доля приемных с фондами в 1993 году
- •Расчет максимальной разности накопленных частостей в распределениях прогнозов врачей двух групп
- •Распределение прогнозов у врачей с фондами и врачей без фондов
- •Четырехклеточная таблица для подсчета критерия φ* Фишера для выявления различий в прогнозах двух групп общепрактикующих врачей
- •Задачи и упражнения
- •Показатели преобладания правого и левого глаза в выборке
- •Показатели количества партнеров у врачей с фондами и врачей без фондов (по данным м. А. Курочкина, е. В. Сидоренко, ю. А. Чуракова, 1992)
- •Библиографический список
- •Критические значения коэффициента корреляции rxy Пирсона
- •Приведем оглавление диплома
- •Глава I. Теоретические основы агрессивности и тревожности личности.
- •Глава II. Основные результаты выполненного исследования агрессивности и тревожности личности и их зависимости от уровня субъективного контроля.
- •Методика Баса-Дарки
- •Методика уск (уровень субъективного контроля)
- •Методика Спилбергера-Ханина
- •Краткая классификация задач и методов их статистического решения [36,4]
7.4. Статистический критерий и число степеней свободы
Статистический критерий – это инструмент определения уровня статистической значимости. Как следует из логики проверки статистических гипотез, в качестве основы для применения статистических критериев используют теоретические распределения для условия, когда верна нулевая гипотеза. Критерий также подразумевает формулу, позволяющую соотнести эмпирическое значение выборочной статистики с этим теоретическим распределением. Применяя эту формулу, исследователь вычисляет эмпирическое значение критерия. Полученное эмпирическое значение позволяет определить р-уровень – значение вероятности того, что нулевая статистическая гипотеза верна.
Помимо формулы эмпирического значения, критерий задает формулу для определения числа степеней свободы. Это делается для того, чтобы свести к минимуму ошибки. В таблицах критических значений статистических критериев в общем количестве данных не учитывают те, которые можно вывести методом дедукции. Оставшиеся данные и составляют так называемое число степеней свободы (обозначается df, ν или k), т.е. то число данных из выборки, значения которых могут быть случайными.
Так, если сумма трех данных равна 8, то первые два из них могут принимать любые значения, но если они определены, то третье значение становится автоматически известным. Если, например, значение первого данного равно 3, а второго – 1, то третье может быть равным только 4. Таким образом, в такой выборке имеются только две степени свободы. В общем случае для выборки в n данных существует n – 1 степень свободы.
Если у нас имеются две независимые выборки, то число степеней свободы для первой из них составляет n1 – 1, а для второй – n2 – 1. А поскольку при определении достоверности разницы между ними опираются на анализ каждой выборки, число степеней свободы, по которому нужно будет находить критерий t в таблице, будет составлять (n1 + n2) – 2.
Если же речь идет о двух зависимых выборках, то в основе расчета лежит вычисление суммы разностей, полученных для каждой пары результатов (т. е., например, разностей между результатами до и после воздействия на одного и того же испытуемого). Поскольку одну (любую) из этих разностей можно вычислить, зная остальные разности и их сумму, число степеней свободы для определения критерия t будет равно n – 1.
В связи с тем, что для каждого случая определение ν(k) имеет свою специфику, каждая формула для расчета эмпирического значения критерия обязательно сопровождается правилом (формулой) для определения числа степеней свободы.
Назначение критерия – проверка статистической гипотезы путем определения р-уровня значимости (вероятности того, что Н0 верна).
Выбор критерия определяется проверяемой статистической гипотезой.
Критерий включает в себя:
1) формулу расчета эмпирического значения критерия по выборочным статистикам;
2) правило (формулу) определения числа степеней свободы;
3) теоретическое распределение для данного числа степеней свободы;
4) правило соотнесения эмпирического значения критерия с теоретическим распределением для определения вероятности того, что Н0 верна.
Для проверки статистических гипотез применяются различные критерии. При этом одному теоретическому распределению могут соответствовать разные формулы критериев – в зависимости от проверяемой статистической гипотезы. Но принцип проверки является общим для всего этого многообразия: вычисленное по формуле эмпирическое значение критерия сопоставляется с теоретическим распределением для заданного числа степеней свободы, что позволяет определить вероятность того, что Н0 верна.