- •Министерство образования и науки Российской Федерации
- •Введение
- •1. Психология и математика
- •1.1. Методологические проблемы использования математики в психологии
- •1.2. Планирование психологических экспериментов и обработка получаемых данных
- •1.3. Использование методов математического моделирования в психологии
- •1.4. Информация и психические процессы
- •1.5. Математические методы в проектировании деятельности человека
- •1.6. Системный анализ в психологии
- •1.7. Применение эвм в психологии
- •2. Понятие выборки
- •2.1. Полное исследование
- •2.2. Выборочное исследование
- •2.3. Зависимые и независимые выборки
- •2.4. Требования к выборке
- •2.5. Репрезентативность выборки
- •2.6. Формирование и объем репрезентативной выборки
- •3. Измерения и шкалы
- •3.1. Измерения
- •3.2. Измерительные шкалы
- •Правила ранжирования
- •3.3. Как определить, в какой шкале измерено явление
- •Задачи и упражнения
- •4. Формы учета результатов измерений
- •4.1. Таблицы исходных данных
- •4.2. Таблицы и графики распределения частот
- •Решения тестовой задачи
- •4.3. Применение таблиц и графиков распределения частот
- •4.4. Таблицы сопряженности номинативных признаков
- •Зависимость распределения оставленных и полученных открыток от их содержания
- •Задачи и упражнения
- •В трех группах
- •5. Первичные описательные статистики
- •5.1. Меры центральной тенденции
- •5.2. Выбор меры центральной тенденции
- •5.3. Квантили распределения
- •5.4. Меры изменчивости
- •Задачи и упражнения
- •6. Нормальный закон распределения и его применение
- •6.1. Понятие о нормальном распределении
- •6.2. Нормальное распределение как стандарт
- •6.3. Разработка тестовых шкал
- •Тестовые нормы – таблица пересчета «сырых» баллов в стены
- •Пример нелинейной нормализации: пересчет «сырых» оценок в шкалу стенайнов
- •6.4. Проверка нормальности распределения
- •Задачи и упражнения
- •7. Общие принципы проверки статистических гипотез
- •7.1. Проверка статистических гипотез
- •7.2. Нулевая и альтернативная гипотезы
- •7.3. Понятие уровня статистической значимости
- •7.4. Статистический критерий и число степеней свободы
- •7.5. Этапы принятия статистического решения
- •7.6. Классификация психологических задач, решаемых с помощью статистических методов
- •8. Статистические критерии различий
- •8.1. Параметрические и непараметрические критерии
- •8.2. Рекомендации к выбору критерия различий
- •9. Корреляционный анализ
- •9.1. Понятие корреляционной связи
- •9.2. Коэффициент корреляции Пирсона
- •9.3. Коэффициент корреляции рангов Спирмена
- •Случай одинаковых (равных) рангов
- •Расчет уровней значимости коэффициентов корреляции
- •Задачи и упражнения
- •Показатели количества ошибок в тренировочной сессии и показатели уровня вербального и невербального интеллекта
- •10. Параметрические критерии различия
- •Задачи и упражнения
- •Результативность испытуемых контрольной и опытной групп (среднее число пораженных мишеней из 25 в 10 сериях испытаний)
- •11. Выявление различий в уровне исследуемого признака
- •11.1. Обоснование задачи сопоставления и сравнения
- •Упорядоченные по убыванию вербального интеллекта ряды индивидуальных значений в двух студенческих выборках
- •Подсчет ранговых сумм по выборкам студентов физического и психологического факультетов
- •Подсчет ранговых сумм по группам испытуемых, работавших над четырьмя неразрешимыми анаграммами
- •Показатели по шкале Авторитетности в группах с разным
- •Задачи и упражнения
- •Показатели сокращения психологической дистанции (в %) после социодраматической замены ролей в группе
- •Показатели интенсивности внутреннего сопротивления при обращении в службу знакомств (в мм)
- •Индивидуальное значение по фактору n 16pf в 4 возрастных группах руководителей (по данным е. В. Сидоренко, 1987)
- •12. Оценка достоверности сдвига в значениях исследуемого признака
- •12.1. Обоснование задачи исследований изменений
- •Классификация сдвигов и критериев оценки их статистической достоверности
- •Оценки степени согласия с утверждениями о допустимости телесных
- •Оценки степени согласия с утверждениями о допустимости телесных
- •Расчет количества положительных, отрицательных и нулевых сдвигов в двух группах суггерендов
- •Расчет критерия т при сопоставлении замеров физического волевого усилия
- •12.4. Критерий χr2 Фридмана
- •Показатели времени решения анаграмм (сек)
- •Задачи и упражнения
- •Оценки степени согласия с утверждениями о допустимости телесных
- •Оценки реального и идеального уровней развития коммуникативных
- •13. Выявление различий в распределении признака
- •13.1. Обоснование задачи сравнения распределений признака
- •13.2.1. Сравнение эмпирического распределения с теоретическим
- •13.2.2. Сравнение двух экспериментальных распределений
- •13.2.3. Использование критерия хи-квадрат для сравнения показателей внутри одной выборки
- •13.3.1. Сопоставление эмпирического распределения с теоретическим
- •Расчет критерия при сопоставлении распределения выборов
- •13.3.2. Сопоставление двух эмпирических распределений
- •Задачи и упражнения
- •Частота встречаемости запретов на психологические поглаживания
- •14. Многофункциональные статистические критерии
- •14.1. Понятие многофункциональных критериев
- •14.2 Критерий φ* – угловое преобразование Фишера
- •Четырехклеточная таблица для расчета критерия при сопоставлении двух групп испытуемых, по процентной доле решивших задачу
- •Показатели расстояния (в см), выбираемого агрессивными и неагрессивными юношами в разговоре с сокурсником (по данным г. А. Тлегеновой, 1990)
- •Показатели интенсивности ощущения собственной недостаточности
- •Четырехклеточная таблица для расчета критерия φ* при сопоставлении групп с большей и меньшей энергией вытеснения по соотношению показателей недостаточности
- •Четырехклеточная таблица для расчета критерия φ* при сопоставлении групп с большей и меньшей энергией вытеснения по уровню показателя недостаточности
- •Четырехклеточная таблица для сопоставления групп с разной энергией вытеснения по частоте нулевых значений показателя недостаточности
- •Распределение прогнозов общепрактикующих врачей о том, какова будет доля приемных с фондами в 1993 году
- •Расчет максимальной разности накопленных частостей в распределениях прогнозов врачей двух групп
- •Распределение прогнозов у врачей с фондами и врачей без фондов
- •Четырехклеточная таблица для подсчета критерия φ* Фишера для выявления различий в прогнозах двух групп общепрактикующих врачей
- •Задачи и упражнения
- •Показатели преобладания правого и левого глаза в выборке
- •Показатели количества партнеров у врачей с фондами и врачей без фондов (по данным м. А. Курочкина, е. В. Сидоренко, ю. А. Чуракова, 1992)
- •Библиографический список
- •Критические значения коэффициента корреляции rxy Пирсона
- •Приведем оглавление диплома
- •Глава I. Теоретические основы агрессивности и тревожности личности.
- •Глава II. Основные результаты выполненного исследования агрессивности и тревожности личности и их зависимости от уровня субъективного контроля.
- •Методика Баса-Дарки
- •Методика уск (уровень субъективного контроля)
- •Методика Спилбергера-Ханина
- •Краткая классификация задач и методов их статистического решения [36,4]
4.2. Таблицы и графики распределения частот
Как правило, анализ данных начинается с изучения того, как часто встречаются те или иные значения интересующего исследователя признака (переменной) в имеющемся множестве наблюдений. Для этого строятся таблицы и графики распределения частот. Нередко они являются основой для получения ценных содержательных выводов исследования.
Если признак принимает всего лишь несколько возможных значений (до 10-15), то таблица распределения частот показывает частоту встречаемости каждого значения признака. Если указывается, сколько раз встречается каждое значение признака, то это – таблица абсолютных частот распределения, если указывается доля наблюдений, приходящихся на то или иное значение признака, то говорят об относительных частотах распределения.
Пример. Предположим, исследователя в нашем примере (табл. 4.1) интересует, как распределяются ответы всех учеников до проведения тренинга. Для этого он подсчитает частоту встречаемости каждого из ответов и составит таблицу распределения частот (табл. 4.2). Таблица показывает, что чаще встречаются средние значения выраженности признака и реже – крайние значения.
Таблица 4.2
Таблица распределения частот
Значение |
fa (абсолютная частота) |
fo (относительная частота) |
fcum (накопленная частота) |
5 |
3 |
0,05 |
1,00 |
4 |
12 |
0,20 |
0,95 |
3 |
21 |
0,35 |
0,75 |
2 |
15 |
0,25 |
0,40 |
1 |
9 |
0,15 |
0,15 |
∑ (сумма): |
60 |
1 |
– |
Абсолютная и относительная частоты связаны соотношением:
где fa – абсолютная частота некоторого значения признака, N – число наблюдений, fо – относительная частота этого значения признака. Очевидно, что сумма всех абсолютных частот равна числу наблюдений – N, а сумма всех относительных частот равна 1. Нередко относительная частота применяется для оценки вероятности встречаемости значения.
Во многих случаях признак может принимать множество различных значений, например, если мы измеряем время решения тестовой задачи. В этом случае о распределении признака позволяет судить таблица сгруппированных частот, в которых частоты группируются по разрядам или интервалам значений признака.
Пример. Предположим, в группе испытуемых численностью 40 человек измерено время решения тестовой задачи. Максимальное время составило 67 секунд, минимальное – 32 секунды. Построение таблицы распределения частот в этом случае производится поэтапно.
Построение таблицы сгруппированных частот
Определение размаха: 67 - 32 = 35.
Выбор желаемого числа разрядов и интервала разрядов. Определяется произвольно. Обычное число разрядов – от 6 до 15. Удобным интервалом разрядов в нашем случае может быть 5. 35 делим на 5, получаем число разрядов – 7. Учитывая, что начинать лучше с 30 или с 31 и заканчивать на 69 или 70, уточняем размах (70 – 30 = 40) и число разрядов (40 : 5 = 8).
Определение границ разрядов. Если мы начнем с 30, то первый разряд будете 30 до 34, второй – с 35 до 49 и т. д., до восьмого – с 65 до 69. Границы соседних разрядов не должны совпадать!
Подсчет частот встречаемости значений признака для каждого интервала.
Таблица 4.3 содержит результат подсчета сгруппированных таким образом частот по разрядам (интервалам) значений признака – времени решения тестовой задачи.
Таблица 4.3
Таблица частот, сгруппированных по интервалам времени