- •Министерство образования и науки Российской Федерации
- •Введение
- •1. Психология и математика
- •1.1. Методологические проблемы использования математики в психологии
- •1.2. Планирование психологических экспериментов и обработка получаемых данных
- •1.3. Использование методов математического моделирования в психологии
- •1.4. Информация и психические процессы
- •1.5. Математические методы в проектировании деятельности человека
- •1.6. Системный анализ в психологии
- •1.7. Применение эвм в психологии
- •2. Понятие выборки
- •2.1. Полное исследование
- •2.2. Выборочное исследование
- •2.3. Зависимые и независимые выборки
- •2.4. Требования к выборке
- •2.5. Репрезентативность выборки
- •2.6. Формирование и объем репрезентативной выборки
- •3. Измерения и шкалы
- •3.1. Измерения
- •3.2. Измерительные шкалы
- •Правила ранжирования
- •3.3. Как определить, в какой шкале измерено явление
- •Задачи и упражнения
- •4. Формы учета результатов измерений
- •4.1. Таблицы исходных данных
- •4.2. Таблицы и графики распределения частот
- •Решения тестовой задачи
- •4.3. Применение таблиц и графиков распределения частот
- •4.4. Таблицы сопряженности номинативных признаков
- •Зависимость распределения оставленных и полученных открыток от их содержания
- •Задачи и упражнения
- •В трех группах
- •5. Первичные описательные статистики
- •5.1. Меры центральной тенденции
- •5.2. Выбор меры центральной тенденции
- •5.3. Квантили распределения
- •5.4. Меры изменчивости
- •Задачи и упражнения
- •6. Нормальный закон распределения и его применение
- •6.1. Понятие о нормальном распределении
- •6.2. Нормальное распределение как стандарт
- •6.3. Разработка тестовых шкал
- •Тестовые нормы – таблица пересчета «сырых» баллов в стены
- •Пример нелинейной нормализации: пересчет «сырых» оценок в шкалу стенайнов
- •6.4. Проверка нормальности распределения
- •Задачи и упражнения
- •7. Общие принципы проверки статистических гипотез
- •7.1. Проверка статистических гипотез
- •7.2. Нулевая и альтернативная гипотезы
- •7.3. Понятие уровня статистической значимости
- •7.4. Статистический критерий и число степеней свободы
- •7.5. Этапы принятия статистического решения
- •7.6. Классификация психологических задач, решаемых с помощью статистических методов
- •8. Статистические критерии различий
- •8.1. Параметрические и непараметрические критерии
- •8.2. Рекомендации к выбору критерия различий
- •9. Корреляционный анализ
- •9.1. Понятие корреляционной связи
- •9.2. Коэффициент корреляции Пирсона
- •9.3. Коэффициент корреляции рангов Спирмена
- •Случай одинаковых (равных) рангов
- •Расчет уровней значимости коэффициентов корреляции
- •Задачи и упражнения
- •Показатели количества ошибок в тренировочной сессии и показатели уровня вербального и невербального интеллекта
- •10. Параметрические критерии различия
- •Задачи и упражнения
- •Результативность испытуемых контрольной и опытной групп (среднее число пораженных мишеней из 25 в 10 сериях испытаний)
- •11. Выявление различий в уровне исследуемого признака
- •11.1. Обоснование задачи сопоставления и сравнения
- •Упорядоченные по убыванию вербального интеллекта ряды индивидуальных значений в двух студенческих выборках
- •Подсчет ранговых сумм по выборкам студентов физического и психологического факультетов
- •Подсчет ранговых сумм по группам испытуемых, работавших над четырьмя неразрешимыми анаграммами
- •Показатели по шкале Авторитетности в группах с разным
- •Задачи и упражнения
- •Показатели сокращения психологической дистанции (в %) после социодраматической замены ролей в группе
- •Показатели интенсивности внутреннего сопротивления при обращении в службу знакомств (в мм)
- •Индивидуальное значение по фактору n 16pf в 4 возрастных группах руководителей (по данным е. В. Сидоренко, 1987)
- •12. Оценка достоверности сдвига в значениях исследуемого признака
- •12.1. Обоснование задачи исследований изменений
- •Классификация сдвигов и критериев оценки их статистической достоверности
- •Оценки степени согласия с утверждениями о допустимости телесных
- •Оценки степени согласия с утверждениями о допустимости телесных
- •Расчет количества положительных, отрицательных и нулевых сдвигов в двух группах суггерендов
- •Расчет критерия т при сопоставлении замеров физического волевого усилия
- •12.4. Критерий χr2 Фридмана
- •Показатели времени решения анаграмм (сек)
- •Задачи и упражнения
- •Оценки степени согласия с утверждениями о допустимости телесных
- •Оценки реального и идеального уровней развития коммуникативных
- •13. Выявление различий в распределении признака
- •13.1. Обоснование задачи сравнения распределений признака
- •13.2.1. Сравнение эмпирического распределения с теоретическим
- •13.2.2. Сравнение двух экспериментальных распределений
- •13.2.3. Использование критерия хи-квадрат для сравнения показателей внутри одной выборки
- •13.3.1. Сопоставление эмпирического распределения с теоретическим
- •Расчет критерия при сопоставлении распределения выборов
- •13.3.2. Сопоставление двух эмпирических распределений
- •Задачи и упражнения
- •Частота встречаемости запретов на психологические поглаживания
- •14. Многофункциональные статистические критерии
- •14.1. Понятие многофункциональных критериев
- •14.2 Критерий φ* – угловое преобразование Фишера
- •Четырехклеточная таблица для расчета критерия при сопоставлении двух групп испытуемых, по процентной доле решивших задачу
- •Показатели расстояния (в см), выбираемого агрессивными и неагрессивными юношами в разговоре с сокурсником (по данным г. А. Тлегеновой, 1990)
- •Показатели интенсивности ощущения собственной недостаточности
- •Четырехклеточная таблица для расчета критерия φ* при сопоставлении групп с большей и меньшей энергией вытеснения по соотношению показателей недостаточности
- •Четырехклеточная таблица для расчета критерия φ* при сопоставлении групп с большей и меньшей энергией вытеснения по уровню показателя недостаточности
- •Четырехклеточная таблица для сопоставления групп с разной энергией вытеснения по частоте нулевых значений показателя недостаточности
- •Распределение прогнозов общепрактикующих врачей о том, какова будет доля приемных с фондами в 1993 году
- •Расчет максимальной разности накопленных частостей в распределениях прогнозов врачей двух групп
- •Распределение прогнозов у врачей с фондами и врачей без фондов
- •Четырехклеточная таблица для подсчета критерия φ* Фишера для выявления различий в прогнозах двух групп общепрактикующих врачей
- •Задачи и упражнения
- •Показатели преобладания правого и левого глаза в выборке
- •Показатели количества партнеров у врачей с фондами и врачей без фондов (по данным м. А. Курочкина, е. В. Сидоренко, ю. А. Чуракова, 1992)
- •Библиографический список
- •Критические значения коэффициента корреляции rxy Пирсона
- •Приведем оглавление диплома
- •Глава I. Теоретические основы агрессивности и тревожности личности.
- •Глава II. Основные результаты выполненного исследования агрессивности и тревожности личности и их зависимости от уровня субъективного контроля.
- •Методика Баса-Дарки
- •Методика уск (уровень субъективного контроля)
- •Методика Спилбергера-Ханина
- •Краткая классификация задач и методов их статистического решения [36,4]
3. Измерения и шкалы
3.1. Измерения
Любое эмпирическое научное исследование начинается с того, что исследователь фиксирует выраженность интересующего его свойства (или свойств) у объекта или объектов исследования, как правило, при помощи чисел. Таким образом, следует различать объекты исследования (в психологии это чаще всего люди, испытуемые), их свойства (то, что интересует исследователя, составляет предмет изучения) и признаки, отражающие в числовой шкале выраженность свойств.
Измерение в терминах производимых исследователем операций – это приписывание объекту числа по определенному правилу. Это правило устанавливает соответствие между измеряемым свойством объекта и результатом измерения – признаком.
В обыденном сознании, как правило, нет необходимости разделять свойства вещей и их признаки: такие свойства предметов, как вес и длина, мы отождествляем, соответственно, с количеством граммов и сантиметров. Если нет необходимости в измерении, мы ограничиваемся сравнительными суждениями: этот человек тревожный, а этот – нет, этот более сообразителен, чем другой, и т. д.
В научном исследовании нам исключительно важно отдавать себе отчет в том, что точность, с которой признак отражает измеряемое свойство, зависит от процедуры (операции) измерения.
Пример. Мы можем разделить всех наших испытуемых на две группы по сообразительности: сообразительные и не очень. И далее приписать каждому испытуемому символ (например, 1 и 0) в зависимости от его принадлежности к той или другой группе. А можем упорядочить всех испытуемых по степени выраженности сообразительности, приписывая каждому его ранг, от самого сообразительного (1 ранг), самого сообразительного из оставшихся (2 ранг) и т. д. до последнего испытуемого. В каком из этих двух случаев измеренный признак будет точнее отражать различия между испытуемыми по измеряемому свойству, догадаться нетрудно.
3.2. Измерительные шкалы
В зависимости от того, какая операция лежит в основе измерения признака, выделяют так называемые измерительные шкалы. Они еще называются шкалами С. Стивенса, по имени ученого-психолога, который их предложил. Эти шкалы устанавливают определенные соотношения между свойствами чисел и измеряемым свойством объектов. Шкалы разделяют на метрические (если есть или может быть установлена единица измерения) и неметрические (если единицы измерения не могут быть установлены).
Номинативная шкала (неметрическая), или шкала наименований (номинальное измерение). В ее основе лежит процедура, обычно не ассоциируемая с измерением. Пользуясь определенным правилом, объекты группируются по различным классам так, чтобы внутри класса они были идентичны по измеряемому свойству. Каждому классу дается наименование и обозначение, обычно числовое. Затем каждому объекту присваивается соответствующее обозначение.
Примеры. Примеры номинативных признаков: «пол» (1 – мужской, 0 – женский), «национальность» (1 – русский, 2 – белорус, 3 – украинец), «предпочтение домашних животных» (1 – собаки, 2 – кошки, 3 – крысы, 0 – никакие) и т. д. В последнем случае, если одному испытуемому присвоена 1, а другому 2, то это обозначает только то, что у них разные предпочтения: у первого – собаки, у второго – кошки. Из того, что 1 < 2, нельзя делать вывод, что у второго предпочтение выражено больше, чем у первого, и т. д.
Заметим, что в этом случае мы учитываем только одно свойство чисел – то, что это разные символы. Остальные свойства чисел не учитываются. Привычные операции с числами – упорядочивание, сложение-вычитание, деление – при измерении в номинативной шкале теряют смысл. При сравнении объектов мы можем делать вывод только о том, принадлежат они к одному или разным классам, тождественны или нет по измеренному свойству. Несмотря на такие ограничения, номинативные шкалы широко используются в психологии, и к ним применимы специальные процедуры обработки и анализа данных.
Ранговая, или порядковая шкала (неметрическая) (как результат ранжирования). Как следует из названия, измерение в этой шкале предполагает приписывание объектам чисел в зависимости от степени выраженности измеряемого свойства.
Пример. Мы можем ранжировать всех испытуемых по интересующему нас свойству на основе экспертной оценки или по результатам выполнения некоторого задания и приписать каждому испытуемому его ранг. Или предложить испытуемым самим определить выраженность изучаемого свойства, пользуясь предложенной шкалой (5-, 7- или 10-балльной).
Существует множество способов получения измерения в порядковой шкале. Но суть остается общей: при сравнении испытуемых друг с другом мы можем сказать, больше или меньше выражено свойство, но не можем сказать, насколько больше или насколько меньше оно выражено, а уж тем более – во сколько раз больше или меньше. При измерении в ранговой шкале, таким образом, из всех свойств чисел учитывается то, что они разные, и то, что одно число больше, чем другое.
Пример. Четверым бегунам присвоены ранги в соответствии с тем, кто раньше достиг «финиша» (ранг 1 – самый быстрый):
-
Бегун
Ранг
А
В
С
D
1
2
3
4
Основываясь только на этих данных, мы можем судить о том, кто раньше прибежал, а кто позже. Но мы не можем судить, насколько каждый из них пробежал быстрее или медленнее другого. Глядя на эти ранги, можно было бы предположить, что бегуны А и В различаются меньше, чем бегуны В и D, так как 2 - 1 = 1, а 4 - 2 = 2. Однако такой вывод – следствие «пленяющей магии чисел»: бегун А мог быть тренированным спортсменом, пробежавшим дистанцию в 2 раза быстрее, чем бегуны В, С и D – «увальни», пришедшие к «финишу» с минимальными различиями во времени.
При ранжировании «вручную», а не при помощи компьютера, необходимо помнить правила ранжирования.