Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
TOPT.docx
Скачиваний:
82
Добавлен:
01.04.2015
Размер:
599.1 Кб
Скачать

13. Поляризация

Поляриза́ция волн — характеристика поперечных волн, описывающая поведение вектора колеблющейся величины в плоскости, перпендикулярной направлению распространения волны.

В продольной волне поляризация возникнуть не может, так как направление колебаний в этом типе волн всегда совпадают с направлением распространения.[1]

Поперечная волна характеризуется двумя направлениями: волновым вектором и вектором амплитуды, всегда перпендикулярным к волновому вектору. Так что в трёхмерном пространстве имеется ещё одна степень свободы — вращение вокруг волнового вектора.

Причиной возникновения поляризации волн может быть:

  • несимметричная генерация волн в источнике возмущения;

  • анизотропность среды распространения волн;

  • преломление и отражение на границе двух сред.

В общем случае для гармонических волн конец волнового вектора описывает в плоскости, поперечной направлению распространения волны,эллипс, и такая поляризация называется эллиптической. Важными частными случаями являются линейная поляризация, при которой колебания возмущения происходят в какой-то одной плоскости, в таком случае говорят о «плоско-поляризованной волне», и круговая илициркулярная поляризация, при которой конец вектора амплитуды описывает окружность в плоскости колебаний, круговая поляризация в зависимости от направления вращения вектора может быть правой или левой.

Поляризация описывается Фигурами Лиссажу и соответствует сложению поперечных колебаний равной частоты.

Поляризация монохроматических волн [править]

В случае плоской монохроматической волны компоненты вектора напряженности электрического поля (также как и компоненты вектора напряженности магнитного поля) меняются совместно по гармоническому закону:

Преобразовав и сложив первые два уравнения можно получить уравнение движения вектора :

Эта квадратичная форма описывает эллипс. То есть конец вектора напряженности плоской монохроматической волны описывает эллипс. Для того, чтобы привести её к каноническому виду нужно повернуть эллипс на угол :

Любой эллипс можно задать в параметрической форме:

Здесь и амплитудные значения компонент вектора соответствующие большой и малой полуосям эллипса. Из последних двух систем уравнений можно сделать следующий вывод:

,

где — вектор Пойнтинга. Таким образом, в плоской монохроматической волне величина вектора Пойнтинга равна сумме потоков в двух произвольных ортогональных направлениях Вводя обозначения и , из тех же двух систем уравнений можно вывести соотношения:

и

С помощью последних трех уравнений можно вычислить все параметры эллиптически поляризованной волны. А именно, зная величины и в произвольной системе координат можно вычислить величину вектора Пойнтинга. С помощью разности фаз можно определить угол поворота большой оси эллипса относительно нашей системы координат, а также величины большой и малой полуосей эллипса и .

Направление вращения волнового вектора определяется разностью фаз . Если , тогда поляризация называется правой, а если, напротив, , поляризация называется левой. Если наблюдатель смотрит навстречу световому лучу, то правой поляризации соответствует движение конца вектора по часовой стрелке, а левой поляризации — против часовой стрелки. Если разность фаз равна , где — целое число, то эллипс вырождается в отрезок. Такая поляризация называется линейной. Другой важный случай возникает, когда и . В этом случае эллипс превращается в окружность, параметрическое уравнение которой имеет вид:

Нетрудно убедиться, что произвольная эллиптическая поляризация может быть разложена на сумму правой и левой круговых поляризаций.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]