Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Диплом ИПОВС 2003 / Пояснительная запискаFinalVersion.doc
Скачиваний:
47
Добавлен:
16.04.2013
Размер:
1.28 Mб
Скачать
        1. Механизм отбора

Обсуждение вопроса о влиянии метода создания родительских пар на поведение генетического алгоритма невозможно вести в отрыве от реализуемого механизма отбора при формировании нового поколения. В своих экспериментах я использовал также и другие механизмы отбора, из которых выделю два: элитный и отбор с вытеснением. Идея элитного отбора, в общем, не нова, этот метод основан на построении новой популяции только из лучших особей репродукционной группы, объединяющей в себе родителей, их потомков и мутантов. В литературе, посвященной генетическим алгоритмам, элитному отбору отводят место как достаточно слабому с точки зрения эффективности поиска. В основном это объясняют потенциальной опасностью преждевременной сходимости, отдавая предпочтение пропорциональному отбору. Однако наш опыт говорит о напрасности таких опасений. Быстрая сходимость, обеспечиваемая элитным отбором, может быть, когда это необходимо, с успехом компенсирована подходящим методом выбора родительских пар, например аутбридингом. Именно такая комбинация "аутбридинг - элитный отбор" является одной из наиболее эффективных для рассматриваемых тестовых функций.

Второй метод, на котором хотелось бы остановиться, это отбор вытеснением. Отбор, построенный на таком принципе, носит бикритериальный характер - то, будет ли особь из репродукционной группы заноситься в популяцию нового поколения, определяется не только величиной ее приспособленности, но и тем, есть ли уже в формируемой популяции следующего поколения особь с аналогичным хромосомным набором. Из всех особей с одинаковыми генотипами предпочтение сначала, конечно же, отдается тем, чья приспособленность выше. Таким образом, достигаются две цели: во-первых, не теряются лучшие найденные решения, обладающие различными хромосомными наборами, а во-вторых, в популяции постоянно поддерживается достаточное генетическое разнообразие. Вытеснение в данном случае формирует новую популяцию скорее из далеко расположенных особей, вместо особей, группирующихся около текущего найденного решения. Этот метод особенно хорошо себя показал при решении многоэкстремальных задач, при этом помимо определения глобальных экстремумов появляется возможность выделить и те локальные максимумы, значения которых близки к глобальным.

    1. Формат данных

В процессе использования программы данные пребывают в нескольких состояниях: исходные данные – в обычном виде, называемые биологическим термином «фенотип», в процессе оптимизации работа идёт с преобразованными данными, или «генотипом». На выход, пользователь снова получает расшифрованную информацию. Таким образом, в генотипе отражены все свойства объекта, и наоборот, можно из генотипа получить фенотип. Всё функционирование алгоритма происходит на уровне генотипа, то есть позволяет обойтись без сведений о структуре используемых объектов. Обычно (и в моём случае тоже) каждому атрибуту объекта соответствует один ген в генотипе. Ген представляет собой битовую строку длиной 32 бита. Для кодирования признаков используется способ кодирования, при котором соседние числа отличаются меньшим количеством позиций, чем при стандартном – код Грея (табл. 1).

Таблица 1 Соответствие десятичных кодов и кодов Грея

Двоичное кодирование

Кодирование по коду Грея

Десятичный код

Двоичное значение

Шестнадцатеричное значение

Десятичный код

Двоичное значение

Шестнадцатеричное значение

0

0000

0h

0

0000

0h

1

0001

1h

1

0001

1h

2

0010

2h

3

0011

3h

3

0011

3h

2

0010

2h

4

0100

4h

6

0110

6h

5

0101

5h

7

0111

7h

6

0110

6h

5

0101

5h

7

0111

7h

4

0100

4h

8

1000

8h

12

1100

Ch

9

1001

9h

13

1101

Dh

10

1010

Ah

15

1111

Fh

11

1011

Bh

14

1110

Eh

12

1100

Ch

10

1010

Ah

13

1101

Dh

11

1011

Bh

14

1110

Eh

9

1001

9h

15

1111

Fh

8

1000

8h

Для простоты длина генов фиксирована. В более сложных задачах может потребоваться применение генов разной длины.

Выходные данные представляются пользователю в виде документа в формате MSWord. Это позволяет удобно просмотреть подробное описание с ценами и распечатать при необходимости. Путь к файлу описания берётся из базы после оптимизации.